摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2S,3R)-3-<(benzyloxy)methoxy>-2-methylpentanal | 123163-78-0

中文名称
——
中文别名
——
英文名称
(2S,3R)-3-<(benzyloxy)methoxy>-2-methylpentanal
英文别名
(2S,3R)-2-methyl-3-(phenylmethoxymethoxy)pentanal
(2S,3R)-3-<(benzyloxy)methoxy>-2-methylpentanal化学式
CAS
123163-78-0
化学式
C14H20O3
mdl
——
分子量
236.311
InChiKey
IPAXMCWYJOFKHR-TZMCWYRMSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.5
  • 重原子数:
    17
  • 可旋转键数:
    8
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    35.5
  • 氢给体数:
    0
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    描述:
    (2S,3R)-3-<(benzyloxy)methoxy>-2-methylpentanal溶剂黄146lithium hexamethyldisilazanetetramethylammonium triacetoxyborohydride 作用下, 以 四氢呋喃乙腈 为溶剂, 反应 16.0h, 生成 (2S,3R,4R,6R,7S,8S,9R,10R,11R)-11-(benzyloxymethoxy)-1-O-tert-butyldimethylsilyl-3,4-(carbonyldioxy)-2,4,6,8,10-pentamethyldecane-1,7,9-triol
    参考文献:
    名称:
    全合成红霉素B
    摘要:
    我们报告了使用两种不同策略进行最终比赛时红霉素B首次完全合成的详细信息。这些方法中的第一种遵循经典方法,其中将去氨胺和可乐宁残基顺序连接到大环内酯上,该内酯是通过癸二酸衍生物的环化形成的,得到双糖基化大环内酯中间体,该中间体被转化为红霉素B.第二种策略的特征是一种非生物方法,其中将带有去氨胺残基的癸二酸环化,生成单糖基化的大环内酯,然后通过一系列步骤将其转化为红霉素B,所述步骤包括重新官能化和糖基化以引入可乐定。通过从头合成来制备双糖基化的癸二酸的尝试是失败的。关键癸二酸中间体的合成特征在于含有C(3)–C(10)的呋喃的氧化转化,以提供二氧杂双环[3.3.1]壬烯酮,该模板用作在C(6)上建立立体中心的模板)和C(8)。立体选择性羟醛反应用于建立C(11)-C(15)段,并进行立体选择性交联以引入包含C(1)-C(2)的丙酸酯亚基。
    DOI:
    10.1016/j.tet.2007.02.044
  • 作为产物:
    参考文献:
    名称:
    Strategies for Macrolide Synthesis. A Concise Approach to Protected Seco-Acids of Erythronolides A and B
    摘要:
    Concise syntheses of protected derivatives of the seco-acids of erythronolides A and B, 5 and 6, respectively, have been completed wherein the longest linear sequence requires only 13 chemical steps from 5-ethylfuraldehyde (15). The syntheses commenced with the asymmetric aldol condensation of 15 according to the Evans protocol to afford the optically pure syn adduct 16, thereby establishing the critical stereocenters at C(4) and C(5) of the erythromycin backbone. Reductive removal of the chiral auxiliary from 16 gave the diol 17, which was converted to the bicyclic enone 18 by an one-pot process involving sequential oxidation of the furan ring and acid-catalyzed bicycloketalization. Stereoselective elaboration of 18 to the tertiary alcohol 19 was achieved in two steps by sequential treatment with lithium dimethylcuprate and methyllithium in the presence of cerium trichloride. Compound 19 underwent facile acid-catalyzed reorganization to the isomeric ketal 21, which was transformed into 24 by a Swern oxidation and a second asymmetric aldol condensation. However, the necessary refunctionalization of 24 into a ketone that would participate in the requisite aldol reaction to append the C(11)-C(15) segment of the erythronolide backbone could not be induced. On the other hand, transthioketalization of 19 gave the triol 26, which was converted to 28 by the thermodynamically-controlled formation of an acetonide of the 1,2-diol array. Deprotection of the C(9) ketone function followed by Swern oxidation produced the keto aldehyde 31, which underwent chemoselective, Lewis acid-mediated addition of tri-n-butylcrotylstannane to the aldehyde function to furnish a mixture (4:1) of the homoallylic alcohols 32 and 33; the major product 32 comprises the C(1)-C(10) subunit common to the seco-acids of both erythronolides A and B. Diastereoselective aldol condensation of the enolate derived from 32 with 40 gave 42 as the major adduct; oxidative processing of the terminal olefin then delivered the erythronolide B seco-acid derivative 46. The proposed structure of 42 was initially based upon its conversion into the polyol 48, which was identical to that derived from natural erythronolide B (49). Subsequent to this chemical correlation, the X-ray structure of 50, which was prepared from 42, unequivocally verified this assignment. In experiments directed toward the preparation of the seco-acid of erythronolide A, the directed aldol reactions of 32 with the aldehydes 59 and 60 were examined. Although the addition of the enolate of 32 to 59 produced none of the requisite adduct, its reaction with 60 gave a mixture (1:5) of 62 and 64. Stereoselective reduction of the C(9) carbonyl function of 62 followed by oxidative cleavage of the double bond and global deprotection gave the polyol 62, which was identical with the polyol derived from natural erythromycin A (1).
    DOI:
    10.1021/ja00090a016
点击查看最新优质反应信息

文献信息

  • A concise asymmetric synthesis of the seco-acid of erythronolide B
    作者:Stephen F. Martin、Gregory J. Pacofsky、Ricky P. Gist、Wen Cherng Lee
    DOI:10.1021/ja00201a066
    日期:1989.9
    The concise synthesis of 3,a protected derivative of the seco acid of erythronolide B, has been achieved by a convergent approach wherein the longest linear sequence employs only 14 chemical operations with the total number of steps being 18. The approach is efficient, and substantial quantities of material may be prepared
    3,一种被保护的赤藓酮内酯 B 的二烯酸衍生物,通过收敛方法实现,其中最长的线性序列仅使用 14 个化学操作,总步数为 18。该方法有效且实质性可以准备大量的材料
  • Effect of metal counterions on the stereoselectivity of aldol reactions used to assemble the seco acid backbone of erythromycin b
    作者:Stephen F. Martin、Wen-Cherng Lee
    DOI:10.1016/s0040-4039(00)73542-8
    日期:1993.4
    reactions of the enolates derived from the ketones 11, 15, and 19 with the aldehyde 2a depended upon whether the counterion was lithium or titanium. For lithium enolates the stereoselectivity appeared to be controlled by the stereochemistry alpha to the carbonyl group of the aldehyde partner, whereas the stereochemistry at the α′-carbon of the enolate was important for the titanium enolate.
    从酮衍生的烯醇化物的醛醇缩合反应的选择性diastereofacial 11,15,和19与醛2A依赖于抗衡离子是否锂或钛。对于烯醇锂而言,立体选择性似乎受α-醛配体的羰基的立体化学控制,而烯醇钛的α'-碳上的立体化学对于烯醇钛是重要的。
  • The Asymmetric Synthesis of Erythromycin B
    作者:Stephen F. Martin、Tsuneaki Hida、Philip R. Kym、Michael Loft、Anne Hodgson
    DOI:10.1021/ja963575y
    日期:1997.4.1
  • An Abiotic Strategy for the Enantioselective Synthesis of Erythromycin B
    作者:Paul J. Hergenrother、Anne Hodgson、Andrew S. Judd、Wen-Cherng Lee、Stephen F. Martin
    DOI:10.1002/anie.200351136
    日期:2003.7.21
  • Synthesis and Biochemical Analysis of Complex Chain-Elongation Intermediates for Interrogation of Molecular Specificity in the Erythromycin and Pikromycin Polyketide Synthases
    作者:Jonathan D. Mortison、Jeffrey D. Kittendorf、David H. Sherman
    DOI:10.1021/ja9060596
    日期:2009.11.4
    The 6-deoxyerythronolide B synthase (DEBS) and pikromycin (Pik) polyketide synthase (PKS) are unique multifunctional enzyme systems that are responsible for the biosynthesis of the erythromycin and pikromycin 14-membered ring aglycones, respectively. Together, these natural product biosynthetic systems provide excellent platforms to examine the fundamental structural and catalytic elements that govern polyketide assembly, processing, and macrocyclization. In these studies, the native pentaketide intermediate for DEBS was synthesized and employed for in vitro chemoenzymatic synthesis of macrolactone products in engineered monomodules Ery5, Ery5-TE, and Ery6. A comparative analysis was performed with the corresponding Pik module 5 (PikAIII) and module 6 (PikAIV), dissecting key similarities and differences between these highly related PKSs. The data revealed that individual modules in the DEBS and Pik PKSs possess distinctive molecular selectivity profiles and suggest that substrate recognition has evolved unique characteristics in each system.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐