Azaflavones compared to flavones as ligands to the benzodiazepine binding site of brain GABAA receptors
摘要:
A series of azaflavone derivatives and analogues were prepared and evaluated for their affinity to the benzodiazepine binding site of the GABA(A) receptor, and compared to their flavone counterparts. Three of the compounds, the azaflavones 9 and 12 as well as the new flavone 13, were also assayed on GABAA receptor subtypes (alpha(1)beta(3)gamma(2s), alpha(2)beta(3)gamma(2s), alpha(4)beta(3)gamma(2s) and alpha(5)beta(3)gamma(2s)), displaying nanomolar affinities as well as selectivity for alpha 1- versus alpha 2- and alpha 3-containing receptors by a factor of between 14 and 26. (C) 2008 Elsevier Ltd. All rights reserved.
develop and evaluate a pharmacophore model previously proposed by Cook and co-workers (Drug Des. Discovery 1995, 12, 193-248) for ligands binding to the benzodiazepine site of the GABA(A) receptor, 40 new flavone derivatives have been synthesized and their affinities for the benzodiazepine site have been determined. Two new regions of steric repulsive interactions between ligand and receptor have been
A series of azaflavone derivatives and analogues were prepared and evaluated for their affinity to the benzodiazepine binding site of the GABA(A) receptor, and compared to their flavone counterparts. Three of the compounds, the azaflavones 9 and 12 as well as the new flavone 13, were also assayed on GABAA receptor subtypes (alpha(1)beta(3)gamma(2s), alpha(2)beta(3)gamma(2s), alpha(4)beta(3)gamma(2s) and alpha(5)beta(3)gamma(2s)), displaying nanomolar affinities as well as selectivity for alpha 1- versus alpha 2- and alpha 3-containing receptors by a factor of between 14 and 26. (C) 2008 Elsevier Ltd. All rights reserved.