摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2R,3S)-2,7,4'-trihydroxyisoflavanone | 131887-80-4

中文名称
——
中文别名
——
英文名称
(2R,3S)-2,7,4'-trihydroxyisoflavanone
英文别名
2,7,4'-trihydroxyisoflavanone;(2R,3S)-2,4',7-trihydroxyisoflavanone;(2R,3S)-2,7-dihydroxy-3-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one
(2R,3S)-2,7,4'-trihydroxyisoflavanone化学式
CAS
131887-80-4
化学式
C15H12O5
mdl
——
分子量
272.257
InChiKey
YACUBWOKTPOMNW-UKRRQHHQSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.8
  • 重原子数:
    20
  • 可旋转键数:
    1
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.13
  • 拓扑面积:
    87
  • 氢给体数:
    3
  • 氢受体数:
    5

SDS

SDS:c409451205062eb7e8a4db50e9af52c1
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Catalytic specificity of pea O-methyltransferases suggests gene duplication for (+)-pisatin biosynthesis
    摘要:
    S-adenosyl-L-methionine: 2-hydroxyisoflavanone 4'-O-methyltransferase (HI4'OMT) methylates 2,7, 4'-trihydroxyisoflavanone to produce formononetin, an essential intermediate in the synthesis of isoflavonoids with methoxy or methylenedioxy groups at carbon 4' (isoflavone numbering). HI4'OMT is highly similar (83% amino acid identity) to (+)-6a-hydroxymaackiain 3-O-methyltransferase (HMM), which catalyzes the last step of (+)-pisatin biosynthesis in pea. Pea contains two linked copies of HMM with 96% amino acid identity. In this report, the catalytic activities of the licorice HI4'OMT protein and of extracts of Escherichia coli containing the pea HMM1 or HMM2 protein are compared on 2,7,4'-trihydroxyisoflavanone and enantiomers of 6a-hydroxymaackiain. All these enzymes produced radiolabelled 2,7-dihydroxy-4'-methoxyisoflavanone or (+)-pisatin from 2,7,4'-trihydroxyisoflavanone or (+)-6a-hydroxymaakiain when incubated with [methyl-C-14]-S-adenosyl-L-methionine. No product was detected when (-)-6a-hydroxymaackiain was used as the substrate. HIWOMT and HMMI showed efficiencies (relative V-max/K-m) for the methylation of 2,7,4'-trihydroxyisoflavanone 20 and 4 times higher than for the methylation of (+)-6a-hydroxymaackiain, respectively. In contrast, HMM2 had a higher V-max and lower K-m on (+)-6a-hydroxymaackiain, and had a 67-fold higher efficiency for the methylation of (+)-6a-hydroxymaackiain than that for 2,7,4'-trihydroxyisoflavanone. Among the 15 sites at which HMMI and HMM2 have different amino acid residues, 11 of the residues in HMM1 are the same as found in HI4'OMTs from three plant species. Modeling of the HMM proteins identified three or four putative active site residues responsible for their different substrate preferences. It is proposed that HMM I is the pea HIWOMT and that HMM2 evolved by the duplication of a gene encoding a general biosynthetic enzyme (HIWOMT). (c) 2006 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.phytochem.2006.09.010
  • 作为产物:
    参考文献:
    名称:
    Catalytic specificity of pea O-methyltransferases suggests gene duplication for (+)-pisatin biosynthesis
    摘要:
    S-adenosyl-L-methionine: 2-hydroxyisoflavanone 4'-O-methyltransferase (HI4'OMT) methylates 2,7, 4'-trihydroxyisoflavanone to produce formononetin, an essential intermediate in the synthesis of isoflavonoids with methoxy or methylenedioxy groups at carbon 4' (isoflavone numbering). HI4'OMT is highly similar (83% amino acid identity) to (+)-6a-hydroxymaackiain 3-O-methyltransferase (HMM), which catalyzes the last step of (+)-pisatin biosynthesis in pea. Pea contains two linked copies of HMM with 96% amino acid identity. In this report, the catalytic activities of the licorice HI4'OMT protein and of extracts of Escherichia coli containing the pea HMM1 or HMM2 protein are compared on 2,7,4'-trihydroxyisoflavanone and enantiomers of 6a-hydroxymaackiain. All these enzymes produced radiolabelled 2,7-dihydroxy-4'-methoxyisoflavanone or (+)-pisatin from 2,7,4'-trihydroxyisoflavanone or (+)-6a-hydroxymaakiain when incubated with [methyl-C-14]-S-adenosyl-L-methionine. No product was detected when (-)-6a-hydroxymaackiain was used as the substrate. HIWOMT and HMMI showed efficiencies (relative V-max/K-m) for the methylation of 2,7,4'-trihydroxyisoflavanone 20 and 4 times higher than for the methylation of (+)-6a-hydroxymaackiain, respectively. In contrast, HMM2 had a higher V-max and lower K-m on (+)-6a-hydroxymaackiain, and had a 67-fold higher efficiency for the methylation of (+)-6a-hydroxymaackiain than that for 2,7,4'-trihydroxyisoflavanone. Among the 15 sites at which HMMI and HMM2 have different amino acid residues, 11 of the residues in HMM1 are the same as found in HI4'OMTs from three plant species. Modeling of the HMM proteins identified three or four putative active site residues responsible for their different substrate preferences. It is proposed that HMM I is the pea HIWOMT and that HMM2 evolved by the duplication of a gene encoding a general biosynthetic enzyme (HIWOMT). (c) 2006 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.phytochem.2006.09.010
点击查看最新优质反应信息

文献信息

  • P-450-Dependent oxidative rearrangement in isoflavone biosynthesis: Reconstitution of P-450 and NADPH:P-450 reductase
    作者:Takashi Hakamatsuka、Muhammed Faisal Hashim、Yutaka Ebizuka、Ushio Sankawa
    DOI:10.1016/s0040-4020(01)86489-9
    日期:1991.7
    interpreted as P-450-mediated reactions associated with migration or bond cleavage. Ring contraction of 7-hydroxy-kaurenoic acid in gibberellin biosynthesis, the formation of a furan ring in furanocoumarin biosynthesis and several rearrangement reactions in steroid metabolism are discussed as examples of P-450 reactions associated with migration or bond cleavage.
    在激发子激发的葛根中研究了黄烷酮甘草酸生成素转化为2,7,4'-三羟基异黄酮的氧化重排反应机理。细胞培养。先前通过一氧化碳和P-450抑制剂的抑制实验证明了细胞色素P-450参与反应,与1,2-芳基迁移相关的羟基化反应。为了获得严格的证据证明该酶是P-450,用溶解的细胞色素P-450和NADPH:细胞色素P-450还原酶部分进行了重建实验。在这些研究中,我们注意到各种生物合成反应都可以解释为与迁移或键断裂相关的P-450介导的反应。讨论了赤霉素生物合成中7-羟基-月桂酸的环收缩,呋喃香豆素生物合成中呋喃环的形成以及类固醇代谢中的一些重排反应,这些都是与迁移或键断裂相关的P-450反应的例子。
  • cDNA Cloning and Biochemical Characterization of S-Adenosyl-l-Methionine: 2,7,4′-Trihydroxyisoflavanone 4′-O-Methyltransferase, a Critical Enzyme of the Legume Isoflavonoid Phytoalexin Pathway
    作者:Tomoyoshi Akashi、Yuji Sawada、Norimoto Shimada、Noriyuki Sakurai、Toshio Aoki、Shin-ichi Ayabe
    DOI:10.1093/pcp/pcg034
    日期:2003.2.15
    Formononetin (7-hydroxy-4′-methoxyisoflavone, also known as 4′-O-methyldaidzein) is an essential intermediate of ecophysiologically active leguminous isoflavonoids. The biosynthetic pathway to produce 4′-methoxyl of formononetin has been unknown because the methyl transfer from S-adenosyl-l-methionine (SAM) to 4′-hydroxyl of daidzein has never been detected in any plants. A hypothesis that SAM: daidzein 7-O-methyltransferase (D7OMT), an enzyme with a different regiospecificity, is involved in formononetin biosynthesis through its intracellular compartmentation with other enzymes recently prevails, but no direct evidence has been presented. We proposed a new scheme of formononetin biosynthesis involving 2,7,4′-trihydroxyisoflavanone as the methyl acceptor and subsequent dehydration. We now cloned a cDNA encoding SAM: 2,7,4′-trihydroxyisoflavanone 4′-O-methyltransferase (HI4′OMT) through the screening of functionally expressed Glycyrrhiza echinata (Fabaceae) cDNAs. The reaction product, 2,7-dihydroxy-4′-methoxyisoflavanone, was unambiguously identified. Recombinant G.echinata D7OMT did not show HI4′OMT activity, and G. echinata HI4′OMT protein free from D7OMT was partially purified. HI4′OMT is thus concluded to be distinct from D7OMT, and their distant phylogenetic relationship was further presented. HI4′OMT may be functionally identical to (+)-6a-hydroxymaackiain 3-OMT of pea. Homologous cDNAs were found in several legumes, and the catalytic function of the Lotus japonicus HI4′OMT was verified, indicating that HI4′OMT is the enzyme of formononetin biosynthesis in general legumes.
    甲酮素(7-羟基-4′-甲氧基异黄酮,又称 4′-O-甲基麦冬苷)是具有生态生理活性的豆科异黄酮的重要中间体。由于从未在任何植物中检测到从 S-腺苷-l-蛋氨酸(SAM)到 4′-羟基麦冬皂苷的甲基转移,因此产生 4′-甲氧基麦冬皂苷的生物合成途径尚不清楚。最近有一种假说认为,SAM:daidzein 7-O-甲基转移酶(D7OMT)是一种具有不同区域特异性的酶,它通过与其他酶在细胞内的分区参与了甲萘素的生物合成,但这种假说尚未得到直接证据。我们提出了一种新的甲酮素生物合成方案,涉及以 2,7,4′-三羟基异黄酮为甲基受体,然后脱水。现在,我们通过筛选功能表达的甘草(豆科)cDNA,克隆出了编码 SAM:2,7,4′-三羟基异黄酮 4′-O-甲基转移酶(HI4′OMT)的 cDNA。反应产物 2,7-二羟基-4′-甲氧基异黄烷酮被明确鉴定。重组的棘尾草 D7OMT 不显示 HI4′OMT 活性,部分纯化了不含 D7OMT 的棘尾草 HI4′OMT 蛋白。因此认为 HI4′OMT 与 D7OMT 是不同的,并进一步介绍了它们之间遥远的系统发育关系。HI4′OMT 在功能上可能与豌豆的 (+)-6a-hydroxymaackiain 3-OMT 相同。在几种豆科植物中发现了同源的cDNA,并验证了莲花HI4′OMT的催化功能,表明HI4′OMT是一般豆科植物中甲酮素生物合成的酶。
  • Molecular and Biochemical Characterization of 2-Hydroxyisoflavanone Dehydratase. Involvement of Carboxylesterase-Like Proteins in Leguminous Isoflavone Biosynthesis  
    作者:Tomoyoshi Akashi、Toshio Aoki、Shin-ichi Ayabe
    DOI:10.1104/pp.104.056747
    日期:2005.3.1
    Abstract

    Isoflavonoids are ecophysiologically active secondary metabolites of the Leguminosae and known for health-promoting phytoestrogenic functions. Isoflavones are synthesized by 1,2-elimination of water from 2-hydroxyisoflavanones, the first intermediate with the isoflavonoid skeleton, but details of this dehydration have been unclear. We screened the extracts of repeatedly fractionated Escherichia coli expressing a Glycyrrhiza echinata cDNA library for the activity to convert a radiolabeled precursor into formononetin (7-hydroxy-4′-methoxyisoflavone), and a clone of 2-hydroxyisoflavanone dehydratase (HID) was isolated. Another HID cDNA was cloned from soybean (Glycine max), based on the sequence information in its expressed sequence tag library. Kinetic studies revealed that G. echinata HID is specific to 2,7-dihydroxy-4′-methoxyisoflavanone, while soybean HID has broader specificity to both 4′-hydroxylated and 4′-methoxylated 2-hydroxyisoflavanones, reflecting the structures of isoflavones contained in each plant species. Strikingly, HID proteins were members of a large carboxylesterase family, of which plant proteins form a monophyletic group and some are assigned defensive functions with no intrinsic catalytic activities identified. Site-directed mutagenesis with soybean HID protein suggested that the characteristic oxyanion hole and catalytic triad are essential for the dehydratase as well as the faint esterase activities. The findings, to our knowledge, represent a new example of recruitment of enzymes of primary metabolism during the molecular evolution of plant secondary metabolism.

    摘要

    异黄酮是豆科植物中具有生理活性的次生代谢产物,以促进健康的植物雌激素功能而闻名。异黄酮通过从2-羟基异黄铃酮中消除水分子的1,2-消除反应合成,而这种脱水的细节一直不清楚。我们筛选了重复分离的大豆球菌表达的甘草刺蒴蝇子草cDNA文库提取物,以将放射性标记的前体转化为甲基丹参酮(7-羟基-4'-甲氧基异黄酮)的活性,从中分离出2-羟基异黄铃酮脱水酶(HID)的克隆。另一个HID cDNA是从大豆(大豆属)中克隆的,基于其表达序列标签库中的序列信息。动力学研究表明,甘草刺蒴蝇子草的HID专门作用于2,7-二羟基-4'-甲氧基异黄铃酮,而大豆的HID则对4'-羟基化和4'-甲氧基化的2-羟基异黄铃酮具有更广泛的特异性,反映了每种植物物种中所含异黄酮的结构。令人惊讶的是,HID蛋白是大量羧酸酯酶家族成员之一,其中植物蛋白形成一个单系群,并且一些被分配为具有无固有催化活性的防御功能。通过对大豆HID蛋白进行定点突变,表明特征的氧阴离子孔和催化三元组对于脱水酶以及微弱的酯酶活性都是必不可少的。据我们所知,这些发现代表了植物次生代谢的分子进化过程中原代谢酶招募的新例子。

  • Molecular Characterization of the Enzyme Catalyzing the Aryl Migration Reaction of Isoflavonoid Biosynthesis in Soybean
    作者:Christopher L. Steele、Mark Gijzen、Dinah Qutob、Richard A. Dixon
    DOI:10.1006/abbi.1999.1238
    日期:1999.7
    The first specific reaction in the biosynthesis of isoflavonoid compounds in plants is the 2-hydroxylation, coupled to aryl migration, of a flavanone. Using a functional genomics approach, we have characterized a cDNA encoding a 2-hydroxyisoflavanone synthase from soybean (Glycine max). Microsomes isolated from insect cells expressing this cytochrome P450 from a baculovirus vector convert 4', 7-dihydroxyflavanone
    植物中异黄酮化合物生物合成中的第一个特定反应是黄烷酮的2-羟基化反应,与芳基迁移有关。使用功能基因组学方法,我们已经表征了编码来自大豆(Glycine max)的2-羟基异黄烷酮合酶的cDNA。从表达杆状病毒载体的表达这种细胞色素P450的昆虫细胞中分离出的微粒体,最有可能通过2,4',7-三羟基异黄酮酮将4',7-二羟基异黄酮(大豆苷元)转化为4',7-二羟基异黄酮(大豆苷元),而后者会自发脱水为大豆苷元。该酶还可以将柚皮苷(4',5,7-三羟基黄酮)转化为染料木黄酮,但速率较低。响应诱导,在苜蓿细胞悬浮液中强烈诱导2-羟基异黄酮酮合酶转录物。
  • Key amino acid residues required for aryl migration catalysed by the cytochrome P450 2-hydroxyisoflavanone synthase
    作者:Yuji Sawada、Kengo Kinoshita、Tomoyoshi Akashi、Toshio Aoki、Shin-ichi Ayabe
    DOI:10.1046/j.1365-313x.2002.01378.x
    日期:2002.9
    flavanone molecule at C-2 and an intramolecular 1,2-aryl migration from C-2 to C-3 to yield 2-hydroxyisoflavanone. In this study, with the aid of alignment of amino acid sequences of CYP93 family P450s and a computer-generated putative stereo structure of the protein, candidates for key amino acid residues in CYP93C2 responsible for the unique aryl migration in 2-hydroxyisoflavanone synthase reaction were
    异黄酮类化合物主要分布在豆科植物中,在宿主植物与生物环境的相互作用中起关键作用。饮食中的异黄酮作为植物雌激素也对人类健康具有有益作用。异黄酮骨架是由植物细胞中细胞色素P450的CYP93C亚家族构建的。该反应由黄烷酮分子在C-2处的羟基化和分子内1,2-芳基从C-2到C-3的迁移形成2-羟基异黄烷酮组成。在这项研究中,借助于CYP93家族P450氨基酸序列的比对和该蛋白的计算机生成的假定立体结构,CYP93C2中负责2-羟基异黄酮合酶反应中独特的芳基迁移的关键氨基酸残基的候选对象是确定。制备表达CYP93C2突变蛋白的重组酵母细胞微粒体,并测试其催化活性。与I-螺旋中心的Ser 310转化为Thr的突变体的反应除了主要的异黄酮产物外,还增加了3-羟基黄酮的形成,3-羟基黄酮是2-羟基异黄酮合酶反应的副产物。更为显着的是,其中β-折叠1-4末端的Lys 375被Thr取代的突变体仅产生3-羟
查看更多