摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,1,5,5-tetradeuteropentane-1,5-diol | 74205-96-2

中文名称
——
中文别名
——
英文名称
1,1,5,5-tetradeuteropentane-1,5-diol
英文别名
1,1,5,5-<2H4>pentane-1,5-diol;pentane-1,1,5,5-d4-1,5-diol;1,1,5,5-Tetradeuteriopentane-1,5-diol
1,1,5,5-tetradeuteropentane-1,5-diol化学式
CAS
74205-96-2
化学式
C5H12O2
mdl
——
分子量
108.117
InChiKey
ALQSHHUCVQOPAS-CQOLUAMGSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.1
  • 重原子数:
    7
  • 可旋转键数:
    4
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    40.5
  • 氢给体数:
    2
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    1,1,5,5-tetradeuteropentane-1,5-diol咪唑三乙胺 作用下, 以 二氯甲烷N,N-二甲基甲酰胺 为溶剂, 反应 2.25h, 生成
    参考文献:
    名称:
    底物双氘对双功能血红素酶Psi因子产生加氧酶A(PpoA)反应的影响
    摘要:
    探测酶: PpoA是一种催化油酸双氧化为8-氢过氧油酸并将该中间体重排为5,8-二羟基油酸的酶。通过使用通过新方案合成的专门氘代的OA衍生物,我们提供了新的动力学数据,可深入了解反应机理并确定限速步骤。
    DOI:
    10.1002/cbic.201000669
  • 作为产物:
    描述:
    1,5-戊二醇potassium tert-butylate 作用下, 以 甲基叔丁基醚 为溶剂, 55.0 ℃ 、200.0 kPa 条件下, 反应 24.0h, 生成 1,1,5,5-tetradeuteropentane-1,5-diol
    参考文献:
    名称:
    使用N杂环卡宾配体调节CH活化反应的多相催化剂的反应性。
    摘要:
    我们报道了在CH活化反应的背景下,添加N-杂环卡宾(NHCs)对异质Ru催化剂的反应性和选择性的巨大影响。我们使用一种简单而稳健的方法,从市售的碳载钌(Ru / C)和不同取代的NHCs开始,制备了一系列新型的空气稳定催化剂。与Ru氘化过程相关的CH氘化过程,可以在很大程度上控制化学结果。实际上,通过启用NHC调节Ru催化剂的反应性:1)提高了有机介质中醇氘化的化学选择性和区域选择性;2)易碎的药学上相关的氘代杂环(嗪,嘌呤)的合成,否则可使用未改性的商业催化剂将其完全还原;
    DOI:
    10.1002/anie.202009258
点击查看最新优质反应信息

文献信息

  • Mechanistic Switch via Subtle Ligand Modulation: Palladium-Catalyzed Synthesis of α,β-Substituted Styrenes via CH Bond Functionalization
    作者:Areli Flores-Gaspar、Ruben Martin
    DOI:10.1002/adsc.201100140
    日期:2011.5
    new catalyst system able to efficiently perform the synthesis of styrenes via CH bond functionalization and a subtle ligand modification are described. The high level of activity achieved allows for the synthesis of highly functionalized α,β‐substituted styrenes, even the elusive E‐configured trisubstituted olefins, in a regio‐ and stereoselective manner. Mechanistic experiments allowed for the identification
    能够有效地进行苯乙烯的合成的新的催化剂体系通过Ç  H键官能化和微妙的配位基修饰的描述。所获得的高活性可以以区域和立体选择性的方式合成高度官能化的α,β取代的苯乙烯,甚至是难以捉摸的E构型的三取代烯烃。机理实验允许鉴定相应的合成中间体。
  • Competitive charge-remote and anion-induced fragmentations of the non-8-enoate anion. A charge-remote reaction which co-occurs with hydrogen scrambling
    作者:Suresh Dua、John H. Bowie、Blas A. Cerda、Chrys Wesdemiotis、Mark. J. Raftery、Julian F. Kelly、Mark S. Taylor、Stephen J. Blanksby、Mark A. Buntine
    DOI:10.1039/a607437e
    日期:——
    The non-8-enoate anion undergoes losses of the elements of C3H6, C4H8 and C6H12 on collisional activation. The mechanisms of these processes have been elucidated by a combination of product ion and labelling (2H and 13C) studies, together with a neutralisation reionisation mass spectrometric study. These studies allow the following conclusions to be made. (i) The loss of C3H6 involves cyclisation of the enolate anion of non-8-enoic acid to yield the cyclopentyl carboxylate anion and propene. (ii) The loss of ‘C4H8’ is a charge-remote process (one which proceeds remote from the charged centre) which yields the pent-4-enoate anion, butadiene and dihydrogen. This process co-occurs and competes with complex H scrambling. (iii) The major loss of ‘C6H12’ occurs primarily by a charge-remote process yielding the acrylate anion, hexa-1,5-diene and dihydrogen, but in this case no H scrambling accompanies the process. (iv) It is argued that the major reason why the two charge-remote processes occur in preference to anion-induced losses of but-1-ene and hex-1-ene from the respective 4- and 2-anions is that although these anions are formed, they have alternative and lower energy fragmentation pathways than those involving the losses of but-1-ene and hex-1-ene; viz. the transient 4-anion undergoes facile proton transfer to yield a more stable anion, whereas the 2-(enolate) anion undergoes preferential cyclisation followed by elimination of propene [see (i) above].
    非8-烯酸根阴离子在碰撞激发下会失去C3H6、C4H8和C6H12的元素。通过产物离子和标记(2H和13C)研究以及中和重离子质谱研究,这些过程的机制得到了阐明。这些研究使我们得出以下结论:(i) C3H6的失去涉及非8-烯酸的烯醇阴离子的环化,生成环戊基羧酸根阴离子和丙烯。(ii) C4H8的损失是一个远程电荷过程(远离带电中心进行的过程),生成戊-4-烯酸根阴离子、丁二烯和氢分子。此过程与复杂的氢交换同时发生并相互竞争。(iii) C6H12的主要损失主要通过一个远程电荷过程进行,生成丙烯酸根阴离子、六烯-1,5和氢分子,但在此过程中没有氢交换伴随。(iv) 主要原因是这两个远程电荷过程优先于从相应的4-和2-阴离子中失去丁-1-烯和己-1-烯,尽管这些阴离子已形成,它们具有比失去丁-1-烯和己-1-烯更为替代且低能量的碎片化路径;即暂态的4-阴离子易于进行质子转移以生成更稳定的阴离子,而2-(烯醇)阴离子则更倾向于环化,随后排除丙烯[见上文(i)]。
  • On the mechanism of the ethyl elimination from the molecular ion of 6-methoxy-1-hexene
    作者:Tineke A. Molenaar-Langeveld、Roel H. Fokkens、Nico M. M. Nibbering
    DOI:10.1002/oms.1210230513
    日期:1988.5
    AbstractIt is shown by 13C and D labelling that the ethyl radical elimination from the molecular ion of 6‐methoxy‐1‐hexene is a very complex process involving at least two different channels. The major channel (80%) is induced by an initial 1,5‐hydrogen shift in the molecular ion from C(5) to C(l) leading via a series of steps to methoxy‐cyclohexnne, which then undergoes a ring contraction to 2‐methyl‐1‐methoxycyclopentane, being the key intermediate for the ethyl loss. The same key intermediate is formed in the other, minor channel (20%) by ring closure directly following an initial 1,6‐hydrogen shift in the molecular ion of 6‐methoxy‐1‐hexene from C(6) to C(l). Collision‐induced dissociation experiments on the [M − ethyl]+ ion from 6‐methoxy‐1‐hexene have further established that it has the unique structure of oxygen methyl cationized 2‐methyIpropen‐2‐al. This ion is also generated by ethyl loss from the molecular ion of 2‐methyl‐1‐methoxycyclopentane itself, as shown by collision‐induced dissociation experiments, thus confirming the key role of the intermediate mentioned.
  • ESR, structure, and reactions of specifically deuterium-labeled pentane cations of x-irradiated Freon matrixes
    作者:G. Dolivo、A. Lund
    DOI:10.1021/j100265a011
    日期:1985.9
  • OHTA, NOBUAKI;YANO, AKIHIKO;OKAMOTO, HIDESHI;ICHIKAWA, TAKAHISA, BULL. FAC. ENG. HIROSHIMA UNIV., 1986, 34, N 2, 155-158
    作者:OHTA, NOBUAKI、YANO, AKIHIKO、OKAMOTO, HIDESHI、ICHIKAWA, TAKAHISA
    DOI:——
    日期:——
查看更多