Reductive Cyclizations of Nitroarenes to Hydroxamic Acids by Visible Light Photoredox Catalysis
摘要:
We have developed a photocatalytic reduction of nitroarenes as an efficient, chemoselective route to biologically important N-phenyl hydroxamic acid scaffolds. Optimal conditions call for 2.5 mol% of a ruthenium photocatalyst, visible light irradiation, and a dihydropyridine terminal reductant. Because of the mild nature of the visible light activation, functional groups that might be sensitive to other non-photochemical reduction methods are easily tolerated.
Reductive Cyclizations of Nitroarenes to Hydroxamic Acids by Visible Light Photoredox Catalysis
摘要:
We have developed a photocatalytic reduction of nitroarenes as an efficient, chemoselective route to biologically important N-phenyl hydroxamic acid scaffolds. Optimal conditions call for 2.5 mol% of a ruthenium photocatalyst, visible light irradiation, and a dihydropyridine terminal reductant. Because of the mild nature of the visible light activation, functional groups that might be sensitive to other non-photochemical reduction methods are easily tolerated.