Light-Directed Radial Combinatorial Chemistry: Orthogonal Safety-Catch Protecting Groups for the Synthesis of Small Molecule Microarrays
摘要:
We describe the development of photolabile protecting groups based on the 3,4,5-trimethoxyphenacyl group (TMP). Orthogonal safety-catches were created by introducing an acid-activatible dimethyl ketal (AA-TMP) and an oxidatively activatible 1,3-dithiane (OA-TMP) into the photolabile TMP group. We demonstrate the application of these protecting groups in light-directed synthesis of small molecule microarrays with diversity elements radially attached to a hydroxyproline scaffold.
Light-Directed Radial Combinatorial Chemistry: Orthogonal Safety-Catch Protecting Groups for the Synthesis of Small Molecule Microarrays
摘要:
We describe the development of photolabile protecting groups based on the 3,4,5-trimethoxyphenacyl group (TMP). Orthogonal safety-catches were created by introducing an acid-activatible dimethyl ketal (AA-TMP) and an oxidatively activatible 1,3-dithiane (OA-TMP) into the photolabile TMP group. We demonstrate the application of these protecting groups in light-directed synthesis of small molecule microarrays with diversity elements radially attached to a hydroxyproline scaffold.
Method and system for the generation of large double stranded DNA fragments
申请人:Cerrina Francesco
公开号:US20070196834A1
公开(公告)日:2007-08-23
Synthesis of long chain molecules such as DNA is carried out rapidly and efficiently to produce relatively large quantities of the desired product. The synthesis of an entire gene or multiple genes formed of many hundreds or thousands of base pairs can be accomplished rapidly and, if desired, in a fully automated process requiring minimal operator intervention, and in a matter of hours, a day or a few days rather than many days or weeks. Production of a desired gene or set of genes having a specified base pair sequence is initiated by analyzing the specified target sequence and determining an optimal set of subsequences of base pairs that can be assembled to form the desired final target sequence. The set of oligonucleotides are then synthesized utilizing automated oligonucleotide synthesis techniques. The synthesized oligonucleotides are subsequently selectively released from the substrate and used in a sequential assembly process.