摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-BSMOC-L-天冬酰氨酸 | 197245-31-1

中文名称
N-BSMOC-L-天冬酰氨酸
中文别名
N-Bsmoc-L-天冬酰氨酸
英文名称
Bsmoc-Asn-OH
英文别名
N-Bsmoc-L-asparagine;(2S)-4-amino-2-[(1,1-dioxo-1-benzothiophen-2-yl)methoxycarbonylamino]-4-oxobutanoic acid
N-BSMOC-L-天冬酰氨酸化学式
CAS
197245-31-1
化学式
C14H14N2O7S
mdl
——
分子量
354.34
InChiKey
SAYGRVJKBKWLHI-JTQLQIEISA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    136°C
  • 沸点:
    757.7±60.0 °C(Predicted)
  • 密度:
    1.553±0.06 g/cm3(Predicted)
  • 稳定性/保质期:
    避还原剂

计算性质

  • 辛醇/水分配系数(LogP):
    -0.7
  • 重原子数:
    24
  • 可旋转键数:
    7
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.21
  • 拓扑面积:
    161
  • 氢给体数:
    3
  • 氢受体数:
    7

安全信息

  • 安全说明:
    S22,S24/25
  • 储存条件:
    保存方法:在干燥、阴凉处密闭存放,并保持温度在5°C以下。

SDS

SDS:b634b36cf10c3098ae61fb5e1a0fd9e8
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    二甲氧基苯甲醇N-BSMOC-L-天冬酰氨酸硫酸 作用下, 以 溶剂黄146 为溶剂, 以71%的产率得到Bsmoc-Asn(Dod)-OH
    参考文献:
    名称:
    The 1,1-Dioxobenzo[b]thiophene-2-ylmethyloxycarbonyl (Bsmoc) Amino-Protecting Group
    摘要:
    Full details are presented for use of the Bsmoc amino-protecting group for both solid phase and rapid continuous solution syntheses. Application to the latter methodology represents a significant improvement over the corresponding Fmoc-based method for rapid solution synthesis due to the opportunity to use water or saturated sodium-chloride solution rather than an acidic phosphate buffer to remove all byproducts, with consequent cleaner phase separation and higher yields of the growing peptide. Comparison of the Bsmoc and Bspoc functions showed that the former, because of steric hindrance, does not suffer from the competitive or premature deblocking observed with the Bspoc system. Because of its incorporation of a styrene chromophore, resin loading of Bsmoc amino acids could be followed as has previously been shown for the Fmoc analogues. Applications of Bsmoc chemistry to peptide sequences incorporating the base sensitive Asp-Gly unit gave less contamination due to aminosuccinimide formation than comparable syntheses involving standard Fmoc chemistry because a weaker or less concentrated base could be used in the deblocking step. Experimental details are presented for building up peptides in solution via the continuous methodology. Deblockings involved the use of insoluble piperazino silica as well as the polyamine TAEA which simplified aqueous separation of the growing, but nonisolated peptide product, from excess acylating agent and other side products formed in the deblocking process. By the appropriate choice of base, one can act selectively at either site of a molecule which incorporates both beta-elimination and Michael acceptor sites as protective units (Bsmoc vs Fm and Fmoc vs Bsm).
    DOI:
    10.1021/jo982140l
  • 作为产物:
    描述:
    benzothiophen-2-yllithiumsodium perborate 、 sodium tetrahydroborate 、 碳酸氢钠 作用下, 以 四氢呋喃二氯甲烷溶剂黄146丙酮 为溶剂, 反应 20.0h, 生成 N-BSMOC-L-天冬酰氨酸
    参考文献:
    名称:
    The 1,1-Dioxobenzo[b]thiophene-2-ylmethyloxycarbonyl (Bsmoc) Amino-Protecting Group
    摘要:
    Full details are presented for use of the Bsmoc amino-protecting group for both solid phase and rapid continuous solution syntheses. Application to the latter methodology represents a significant improvement over the corresponding Fmoc-based method for rapid solution synthesis due to the opportunity to use water or saturated sodium-chloride solution rather than an acidic phosphate buffer to remove all byproducts, with consequent cleaner phase separation and higher yields of the growing peptide. Comparison of the Bsmoc and Bspoc functions showed that the former, because of steric hindrance, does not suffer from the competitive or premature deblocking observed with the Bspoc system. Because of its incorporation of a styrene chromophore, resin loading of Bsmoc amino acids could be followed as has previously been shown for the Fmoc analogues. Applications of Bsmoc chemistry to peptide sequences incorporating the base sensitive Asp-Gly unit gave less contamination due to aminosuccinimide formation than comparable syntheses involving standard Fmoc chemistry because a weaker or less concentrated base could be used in the deblocking step. Experimental details are presented for building up peptides in solution via the continuous methodology. Deblockings involved the use of insoluble piperazino silica as well as the polyamine TAEA which simplified aqueous separation of the growing, but nonisolated peptide product, from excess acylating agent and other side products formed in the deblocking process. By the appropriate choice of base, one can act selectively at either site of a molecule which incorporates both beta-elimination and Michael acceptor sites as protective units (Bsmoc vs Fm and Fmoc vs Bsm).
    DOI:
    10.1021/jo982140l
点击查看最新优质反应信息

文献信息

  • [EN] COMPOUND HAVING ENAC ACTIVATION POTENCY<br/>[FR] COMPOSÉ AYANT UNE PUISSANCE D'ACTIVATION D'ENAC<br/>[JA] ENaC活性化能を有する化合物
    申请人:NISSIN FOODS HOLDINGS CO LTD
    公开号:WO2020059660A1
    公开(公告)日:2020-03-26
    [課題]新規のhENaC αβγ活性化剤を提供することを課題とする。 [解決手段]下記式(1)で表される3-クロロ-N-(2-((1,1-ジオキシドテトラハイドロチオフェン-3-イル)アミノ)-2-オキソエチル)-N-エチルベンゾ[β]チオフェン-2-カルボキシアミドと同一若しくは類似構造を有する化合物又はその塩を有効成分とするhENaC αβγの活性化剤。本発明のhENaC αβγの活性化剤を利用することで医薬、食品産業及び健康科学のさらなる発展に貢献することができる。
  • The 1,1-Dioxobenzo[<i>b</i>]thiophene-2-ylmethyloxycarbonyl (Bsmoc) Amino-Protecting Group
    作者:Louis A. Carpino、Mohamed Ismail、George A. Truran、E. M. E. Mansour、Shin Iguchi、Dumitru Ionescu、Ayman El-Faham、Christoph Riemer、Ralf Warrass
    DOI:10.1021/jo982140l
    日期:1999.6.1
    Full details are presented for use of the Bsmoc amino-protecting group for both solid phase and rapid continuous solution syntheses. Application to the latter methodology represents a significant improvement over the corresponding Fmoc-based method for rapid solution synthesis due to the opportunity to use water or saturated sodium-chloride solution rather than an acidic phosphate buffer to remove all byproducts, with consequent cleaner phase separation and higher yields of the growing peptide. Comparison of the Bsmoc and Bspoc functions showed that the former, because of steric hindrance, does not suffer from the competitive or premature deblocking observed with the Bspoc system. Because of its incorporation of a styrene chromophore, resin loading of Bsmoc amino acids could be followed as has previously been shown for the Fmoc analogues. Applications of Bsmoc chemistry to peptide sequences incorporating the base sensitive Asp-Gly unit gave less contamination due to aminosuccinimide formation than comparable syntheses involving standard Fmoc chemistry because a weaker or less concentrated base could be used in the deblocking step. Experimental details are presented for building up peptides in solution via the continuous methodology. Deblockings involved the use of insoluble piperazino silica as well as the polyamine TAEA which simplified aqueous separation of the growing, but nonisolated peptide product, from excess acylating agent and other side products formed in the deblocking process. By the appropriate choice of base, one can act selectively at either site of a molecule which incorporates both beta-elimination and Michael acceptor sites as protective units (Bsmoc vs Fm and Fmoc vs Bsm).
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物