摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-(5,6,7-Trimethoxy-1H-indole-2-carbonyl)-1,1a,2,3-tetrahydro-3-aza-cyclopropa[1,5]cyclopenta[1,2b]naphthalen-9-one | 198709-10-3

中文名称
——
中文别名
——
英文名称
3-(5,6,7-Trimethoxy-1H-indole-2-carbonyl)-1,1a,2,3-tetrahydro-3-aza-cyclopropa[1,5]cyclopenta[1,2b]naphthalen-9-one
英文别名
11-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-11-azatetracyclo[8.4.0.01,13.03,8]tetradeca-3,5,7,9-tetraen-2-one
3-(5,6,7-Trimethoxy-1H-indole-2-carbonyl)-1,1a,2,3-tetrahydro-3-aza-cyclopropa[1,5]cyclopenta[1,2b]naphthalen-9-one化学式
CAS
198709-10-3
化学式
C25H22N2O5
mdl
——
分子量
430.46
InChiKey
JAIMNQBKRPIMQJ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.3
  • 重原子数:
    32
  • 可旋转键数:
    4
  • 环数:
    6.0
  • sp3杂化的碳原子比例:
    0.28
  • 拓扑面积:
    80.9
  • 氢给体数:
    1
  • 氢受体数:
    5

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    3-(5,6,7-Trimethoxy-1H-indole-2-carbonyl)-1,1a,2,3-tetrahydro-3-aza-cyclopropa[1,5]cyclopenta[1,2b]naphthalen-9-one1,8-二氮杂双环[5.4.0]十一碳-7-烯 作用下, 以 乙腈 为溶剂, 反应 0.25h, 以85%的产率得到3-(5-Methoxy-1H-indole-2-carbonyl)-1,1a,2,3-tetrahydro-3-aza-cyclopropa[1,5]cyclopenta[1,2b]naphthalen-9-one
    参考文献:
    名称:
    Synthesis and Evaluation of CC-1065 and Duocarmycin Analogues Incorporating the Iso-CI and Iso-CBI Alkylation Subunits:  Impact of Relocation of the C-4 Carbonyl
    摘要:
    The synthesis of 2-(tert-Butyloxycarbonyl)-1, 2, 9, 9a-tetrahydrocyclopropa[c]benzo[f]indol-8-one (31, N-BOC-iso-CBI) and 1-(tert-Butyloxycarbonyl)-4-hydroxy-3-[[(methanesulfonyl)oxy]methyl]-2, 3-dihydroindole (19, seco-N-BOC-iso-CI) containing an isomeric structural modification in the CC-1065 and duocarmycin alkylation subunits and their incorporation into analogues of the natural products are detailed. The approach was based on a directed ortho metalation of an appropriately functionalized benzene (13) or naphthalene (24) precursor to regiospecifically install iodine at the C-2 position. Conversion of these respective intermediates to the dihydroindole skeleton utilized an established 5-exo-trig aryl radical cyclization onto an unactivated alkene with subsequent TEMPO trap or the more recent 5-exo-trig aryl radical cyclization onto a vinyl chloride for direct synthesis of the immediate precursors. Closure of the activated cyclopropane to complete the iso-CBI nucleus was accomplished by a selective ortho spirocyclization. The evaluation of the iso-CBI-based agents revealed a significant stability comparable to that of CC-1065 and duocarmycin A, but that it is more reactive than duocarmycin SA (6 - 7x) or the direct comparison CBI-based agents (5x) for which X-ray structure comparisons served to establish the basis for their inherent reaction regioselectivity and reactivity. Resolution and synthesis of a full set of natural product analogues and subsequent evaluation of their DNA alkylation properties revealed that the iso-CBI analogues, even with the relocation of the C-4 carbonyl and the most substantial structural modifications to the alkylation subunit to date, reacted at comparable rates and retain the identical and characteristic sequence selectivity of CC-1065 and the duocarmycins. This observation is inconsistent with the proposal that a sequence-dependent C-4 carbonyl protonation by strategically located DNA backbone phosphates controls the DNA alkylation selectivity but is consistent with the proposal that it is determined by the AT-rich noncovalent binding selectivity of the agents and the steric accessibility of the N3 alkylation site. Confirmation that the DNA alkylation reaction is derived from adenine N3 addition to the least substituted carbon of the activated cyclopropane, and its quantitation (95%) was established by isolation and characterization of the depurination adenine N3 adduct. Consistent with past studies and despite the deep-seated structural change in the alkylation subunit, the agents were found to exhibit potent cytotoxic activity that correlates with their inherent reactivity.
    DOI:
    10.1021/jo971686p
  • 作为产物:
    参考文献:
    名称:
    Synthesis and Evaluation of CC-1065 and Duocarmycin Analogues Incorporating the Iso-CI and Iso-CBI Alkylation Subunits:  Impact of Relocation of the C-4 Carbonyl
    摘要:
    The synthesis of 2-(tert-Butyloxycarbonyl)-1, 2, 9, 9a-tetrahydrocyclopropa[c]benzo[f]indol-8-one (31, N-BOC-iso-CBI) and 1-(tert-Butyloxycarbonyl)-4-hydroxy-3-[[(methanesulfonyl)oxy]methyl]-2, 3-dihydroindole (19, seco-N-BOC-iso-CI) containing an isomeric structural modification in the CC-1065 and duocarmycin alkylation subunits and their incorporation into analogues of the natural products are detailed. The approach was based on a directed ortho metalation of an appropriately functionalized benzene (13) or naphthalene (24) precursor to regiospecifically install iodine at the C-2 position. Conversion of these respective intermediates to the dihydroindole skeleton utilized an established 5-exo-trig aryl radical cyclization onto an unactivated alkene with subsequent TEMPO trap or the more recent 5-exo-trig aryl radical cyclization onto a vinyl chloride for direct synthesis of the immediate precursors. Closure of the activated cyclopropane to complete the iso-CBI nucleus was accomplished by a selective ortho spirocyclization. The evaluation of the iso-CBI-based agents revealed a significant stability comparable to that of CC-1065 and duocarmycin A, but that it is more reactive than duocarmycin SA (6 - 7x) or the direct comparison CBI-based agents (5x) for which X-ray structure comparisons served to establish the basis for their inherent reaction regioselectivity and reactivity. Resolution and synthesis of a full set of natural product analogues and subsequent evaluation of their DNA alkylation properties revealed that the iso-CBI analogues, even with the relocation of the C-4 carbonyl and the most substantial structural modifications to the alkylation subunit to date, reacted at comparable rates and retain the identical and characteristic sequence selectivity of CC-1065 and the duocarmycins. This observation is inconsistent with the proposal that a sequence-dependent C-4 carbonyl protonation by strategically located DNA backbone phosphates controls the DNA alkylation selectivity but is consistent with the proposal that it is determined by the AT-rich noncovalent binding selectivity of the agents and the steric accessibility of the N3 alkylation site. Confirmation that the DNA alkylation reaction is derived from adenine N3 addition to the least substituted carbon of the activated cyclopropane, and its quantitation (95%) was established by isolation and characterization of the depurination adenine N3 adduct. Consistent with past studies and despite the deep-seated structural change in the alkylation subunit, the agents were found to exhibit potent cytotoxic activity that correlates with their inherent reactivity.
    DOI:
    10.1021/jo971686p
点击查看最新优质反应信息

文献信息

  • Synthesis and Evaluation of CC-1065 and Duocarmycin Analogues Incorporating the Iso-CI and Iso-CBI Alkylation Subunits:  Impact of Relocation of the C-4 Carbonyl
    作者:Dale L. Boger、Robert M. Garbaccio、Qing Jin
    DOI:10.1021/jo971686p
    日期:1997.12.1
    The synthesis of 2-(tert-Butyloxycarbonyl)-1, 2, 9, 9a-tetrahydrocyclopropa[c]benzo[f]indol-8-one (31, N-BOC-iso-CBI) and 1-(tert-Butyloxycarbonyl)-4-hydroxy-3-[[(methanesulfonyl)oxy]methyl]-2, 3-dihydroindole (19, seco-N-BOC-iso-CI) containing an isomeric structural modification in the CC-1065 and duocarmycin alkylation subunits and their incorporation into analogues of the natural products are detailed. The approach was based on a directed ortho metalation of an appropriately functionalized benzene (13) or naphthalene (24) precursor to regiospecifically install iodine at the C-2 position. Conversion of these respective intermediates to the dihydroindole skeleton utilized an established 5-exo-trig aryl radical cyclization onto an unactivated alkene with subsequent TEMPO trap or the more recent 5-exo-trig aryl radical cyclization onto a vinyl chloride for direct synthesis of the immediate precursors. Closure of the activated cyclopropane to complete the iso-CBI nucleus was accomplished by a selective ortho spirocyclization. The evaluation of the iso-CBI-based agents revealed a significant stability comparable to that of CC-1065 and duocarmycin A, but that it is more reactive than duocarmycin SA (6 - 7x) or the direct comparison CBI-based agents (5x) for which X-ray structure comparisons served to establish the basis for their inherent reaction regioselectivity and reactivity. Resolution and synthesis of a full set of natural product analogues and subsequent evaluation of their DNA alkylation properties revealed that the iso-CBI analogues, even with the relocation of the C-4 carbonyl and the most substantial structural modifications to the alkylation subunit to date, reacted at comparable rates and retain the identical and characteristic sequence selectivity of CC-1065 and the duocarmycins. This observation is inconsistent with the proposal that a sequence-dependent C-4 carbonyl protonation by strategically located DNA backbone phosphates controls the DNA alkylation selectivity but is consistent with the proposal that it is determined by the AT-rich noncovalent binding selectivity of the agents and the steric accessibility of the N3 alkylation site. Confirmation that the DNA alkylation reaction is derived from adenine N3 addition to the least substituted carbon of the activated cyclopropane, and its quantitation (95%) was established by isolation and characterization of the depurination adenine N3 adduct. Consistent with past studies and despite the deep-seated structural change in the alkylation subunit, the agents were found to exhibit potent cytotoxic activity that correlates with their inherent reactivity.
查看更多