摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-deoxyadhumulone | 4374-92-9

中文名称
——
中文别名
——
英文名称
4-deoxyadhumulone
英文别名
4-Deoxyadhumulon;2',4',6'-Trihydroxy-2-methyl-3',5'-bis-(3-methyl-2-butenyl)-butyrophenon;3,5-Bis-<γ,γ-dimethyl-allyl>-phor-α-methyl-butyrophenon, 4-Desoxy-adhumulon;Deoxyadlupulone;2-methyl-1-[2,4,6-trihydroxy-3,5-bis(3-methylbut-2-enyl)phenyl]butan-1-one
4-deoxyadhumulone化学式
CAS
4374-92-9
化学式
C21H30O4
mdl
——
分子量
346.467
InChiKey
VXESUOYBWMDWCJ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    515.1±50.0 °C(Predicted)
  • 密度:
    1.090±0.06 g/cm3(Predicted)
  • 保留指数:
    2364;2365

计算性质

  • 辛醇/水分配系数(LogP):
    6.3
  • 重原子数:
    25
  • 可旋转键数:
    7
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.48
  • 拓扑面积:
    77.8
  • 氢给体数:
    3
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    4-deoxyadhumuloneDMAPP 生成 5-Hydroxy-2-(2-methylbutanoyl)-4,4,6-tris(3-methylbut-2-en-1-yl)-3-oxocyclohexa-1,5-dien-1-olate 、 pyrophosphoric acid氢(+1)阳离子
    参考文献:
    名称:
    A Heteromeric Membrane-Bound Prenyltransferase Complex from Hop Catalyzes Three Sequential Aromatic Prenylations in the Bitter Acid Pathway
    摘要:
    苦酸(α和β型)占啤酒花腺毛重量的30%以上,是啤酒苦味的来源。这些多烯基化合物的生物活性多种多样,其中一些可能对人体健康有益。苦酸的生物合成途径已经过广泛研究,苦酸合成早期步骤的基因也已克隆并确定功能。然而,人们对催化β-苦酸合成途径中三个连续烯基化步骤的酶知之甚少。在此,我们采用酵母(酿酒酵母)系统对芳香烯基转移酶(PT)基因的功能进行了鉴定。利用酵母系统对从啤酒花腺毛特异性互补DNA文库中获得的两个PT基因(HlPT1L和HlPT2)进行了功能鉴定。在酵母中,经过密码子优化的PT1L和PT2与上游基因共表达可产生苦酸,但单独表达任一PT基因时均未检测到苦酸。PT1L和PT2中富含天冬氨酸的基序的逐步突变进一步揭示了β-苦酸生物合成中这两种酶的烯基化序列:PT1L仅催化第一个烯基化步骤,PT2催化随后的两个烯基化步骤。利用酵母双杂交系统、相互共沉淀和体外生化分析,证明了PT1L和PT2之间的相互作用形成的代谢体。这些结果直接证明了膜结合烯基转移酶的功能代谢体参与啤酒花苦酸生物合成。
    DOI:
    10.1104/pp.114.253682
  • 作为产物:
    描述:
    2-甲基-1-(2,4,6-三羟基苯基)丁烷-1-酮异戊烯醇aluminum oxide 作用下, 以 环己烷 为溶剂, 反应 24.0h, 以31%的产率得到4-deoxyadhumulone
    参考文献:
    名称:
    [EN] PROCESSES FOR THE PREPARATION OF ORTHO-ALLYLATED HYDROXY ARYL COMPOUNDS
    [FR] PROCÉDÉS DE PRÉPARATION DE COMPOSÉS HYDROXY-ARYLE ORTHO-ALLYLÉS
    摘要:
    本申请描述了一种制备邻烯丙基羟基芳基化合物的方法,例如通过在非质子溶剂中,在氧化铝和铝烷氧化物中选择的铝化合物存在下,将烯丙醇与羟基芳基化合物反应,其中羟基芳基化合物中至少有一个碳原子位于羟基的邻位且未被取代。本申请还包括化合物的化学式(I)。
    公开号:
    WO2021237371A1
点击查看最新优质反应信息

文献信息

  • PROCESSES FOR THE PREPARATION OF ORTHO-ALLYLATED HYDROXY ARYL COMPOUNDS
    申请人:McMaster University
    公开号:US20210380513A1
    公开(公告)日:2021-12-09
    The present application describes process for preparing an ortho-allylated hydroxy aryl compounds such as compounds of Formula (I) by reacting an allylic alcohol with a hydroxy aryl compound in the presence of aluminum compound selected from alumina and aluminum alkoxides and in a non-protic solvent wherein at least one carbon atom ortho to the hydroxy group in the hydroxy aryl compound is unsubstituted. The present application also includes compounds of Formula (I).
  • [EN] PROCESSES FOR THE PREPARATION OF ORTHO-ALLYLATED HYDROXY ARYL COMPOUNDS<br/>[FR] PROCÉDÉS DE PRÉPARATION DE COMPOSÉS HYDROXY-ARYLE ORTHO-ALLYLÉS
    申请人:UNIV MCMASTER
    公开号:WO2021237371A1
    公开(公告)日:2021-12-02
    The present application describes process for preparing an ortho-allylated hydroxy aryl compounds such as compounds of Formula (I) by reacting an allylic alcohol with a hydroxy aryl compound in the presence of aluminum compound selected from alumina and aluminum alkoxides and in a non-protic solvent wherein at least one carbon atom ortho to the hydroxy group in the hydroxy aryl compound is unsubstituted. The present application also includes compounds of Formula (I).
    本申请描述了一种制备邻烯丙基羟基芳基化合物的方法,例如通过在非质子溶剂中,在氧化铝和铝烷氧化物中选择的铝化合物存在下,将烯丙醇与羟基芳基化合物反应,其中羟基芳基化合物中至少有一个碳原子位于羟基的邻位且未被取代。本申请还包括化合物的化学式(I)。
  • A Heteromeric Membrane-Bound Prenyltransferase Complex from Hop Catalyzes Three Sequential Aromatic Prenylations in the Bitter Acid Pathway
    作者:Haoxun Li、Zhaonan Ban、Hao Qin、Liya Ma、Andrew J. King、Guodong Wang
    DOI:10.1104/pp.114.253682
    日期:2015.3
    Bitter acids (α and β types) account for more than 30% of the fresh weight of hop (Humulus lupulus) glandular trichomes and are well known for their contribution to the bitter taste of beer. These multiprenylated chemicals also show diverse biological activities, some of which have potential benefits to human health. The bitter acid biosynthetic pathway has been investigated extensively, and the genes for the early steps of bitter acid synthesis have been cloned and functionally characterized. However, little is known about the enzyme(s) that catalyze three sequential prenylation steps in the β-bitter acid pathway. Here, we employed a yeast (Saccharomyces cerevisiae) system for the functional identification of aromatic prenyltransferase (PT) genes. Two PT genes (HlPT1L and HlPT2) obtained from a hop trichome-specific complementary DNA library were functionally characterized using this yeast system. Coexpression of codon-optimized PT1L and PT2 in yeast, together with upstream genes, led to the production of bitter acids, but no bitter acids were detected when either of the PT genes was expressed by itself. Stepwise mutation of the aspartate-rich motifs in PT1L and PT2 further revealed the prenylation sequence of these two enzymes in β-bitter acid biosynthesis: PT1L catalyzed only the first prenylation step, and PT2 catalyzed the two subsequent prenylation steps. A metabolon formed through interactions between PT1L and PT2 was demonstrated using a yeast two-hybrid system, reciprocal coimmunoprecipitation, and in vitro biochemical assays. These results provide direct evidence of the involvement of a functional metabolon of membrane-bound prenyltransferases in bitter acid biosynthesis in hop.
    苦酸(α和β型)占啤酒花腺毛重量的30%以上,是啤酒苦味的来源。这些多烯基化合物的生物活性多种多样,其中一些可能对人体健康有益。苦酸的生物合成途径已经过广泛研究,苦酸合成早期步骤的基因也已克隆并确定功能。然而,人们对催化β-苦酸合成途径中三个连续烯基化步骤的酶知之甚少。在此,我们采用酵母(酿酒酵母)系统对芳香烯基转移酶(PT)基因的功能进行了鉴定。利用酵母系统对从啤酒花腺毛特异性互补DNA文库中获得的两个PT基因(HlPT1L和HlPT2)进行了功能鉴定。在酵母中,经过密码子优化的PT1L和PT2与上游基因共表达可产生苦酸,但单独表达任一PT基因时均未检测到苦酸。PT1L和PT2中富含天冬氨酸的基序的逐步突变进一步揭示了β-苦酸生物合成中这两种酶的烯基化序列:PT1L仅催化第一个烯基化步骤,PT2催化随后的两个烯基化步骤。利用酵母双杂交系统、相互共沉淀和体外生化分析,证明了PT1L和PT2之间的相互作用形成的代谢体。这些结果直接证明了膜结合烯基转移酶的功能代谢体参与啤酒花苦酸生物合成。
查看更多