The substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata
摘要:
In previous work, we studied and reported that an enzyme from Curvularia lunata 3.4381 had the novel specificity to hydrolyze the terminal rhamnosyl at C-3 position of steroidal saponin and obtained four transformed products; the enzyme was purified and ascertained as glucoamylase (EC 3.2.1.3 GA). In this work, the enzyme exhibiting steroidal saponin-rhamnosidase activity was systematically studied on 21 steroidal saponins and 6 ginsenosides. The results showed that the alpha-1,2-linked end-rhamnosyl residues at C-3 position of steroidal saponins could be hydrolyzed to corresponding secondary steroidal saponins, among which 18 compounds were isolated and identified, including 3 new secondary compounds. For the furostanosides having glucosyl residues at the C-26 position, hydrolysis occurred first at end- rhamnosyl at C-3 position to produce secondary furostanosides. The reaction of hydrolyzing glucosyl at C-26 position depended considerably on longer reaction times yielding the corresponding secondary spirostanosides ( without rhamnosyl and glucosyl residues). The enzyme had the strict specificity for the terminal alpha-1,2-linked rhamnosyl residues of linear chain, or the terminal alpha-1,2-linked rhamnosyl residues with branched chain of 1,4-linked glycosyl residues of sugar chain at C-3 position of steroidal saponins, it was not specific for different aglycones, different glycons, and the number of glycon of sugar chain of steroidal saponin. The end- rhamnosyl of ginsenosides and p-nitrophenyl-a-L-rhamnopyranoside (pNPR) could not be hydrolyzed by the enzyme from C. lunata. (c) 2007 Elsevier Ltd. All rights reserved.
During activity-guided fractionations to screen for antineoplastic agents, further studies by means of preparative HPLC led to the isolation of four known furostanol saponins: protoneodioscin, protodioscin, protoneogracillin, protogracillin, along with their corresponding artifacts: methyl protoneodioscin, methyl protodioscin, methyl protoneogracillin, and methyl protogracillin, from the rhizomes of Dioscorea collettii var. hypoglauca. Among them, protoneodioscin, protodioscin, and protoneogracillin are first reported from the title plant. The structures of the compounds were established on the basis of chemical evidence and spectral analysis (1H-NMR, 13C-IMMR, 1H-1H COSY, HMQC, HMBC, and FAB-MS). These eight compounds all caused morphological abnormality of Pyricularia oryzae mycelia. They also showed cytotoxic activities against the cancer cell line of K562 in vitro as antineoplastic agents.
The substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata
作者:Bing Feng、Li-ping Kang、Bai-ping Ma、Bo Quan、Wen-bin Zhou、Yong-ze Wang、Yu Zhao、Yi-xun Liu、Sheng-qi Wang
DOI:10.1016/j.tet.2007.04.076
日期:2007.7
In previous work, we studied and reported that an enzyme from Curvularia lunata 3.4381 had the novel specificity to hydrolyze the terminal rhamnosyl at C-3 position of steroidal saponin and obtained four transformed products; the enzyme was purified and ascertained as glucoamylase (EC 3.2.1.3 GA). In this work, the enzyme exhibiting steroidal saponin-rhamnosidase activity was systematically studied on 21 steroidal saponins and 6 ginsenosides. The results showed that the alpha-1,2-linked end-rhamnosyl residues at C-3 position of steroidal saponins could be hydrolyzed to corresponding secondary steroidal saponins, among which 18 compounds were isolated and identified, including 3 new secondary compounds. For the furostanosides having glucosyl residues at the C-26 position, hydrolysis occurred first at end- rhamnosyl at C-3 position to produce secondary furostanosides. The reaction of hydrolyzing glucosyl at C-26 position depended considerably on longer reaction times yielding the corresponding secondary spirostanosides ( without rhamnosyl and glucosyl residues). The enzyme had the strict specificity for the terminal alpha-1,2-linked rhamnosyl residues of linear chain, or the terminal alpha-1,2-linked rhamnosyl residues with branched chain of 1,4-linked glycosyl residues of sugar chain at C-3 position of steroidal saponins, it was not specific for different aglycones, different glycons, and the number of glycon of sugar chain of steroidal saponin. The end- rhamnosyl of ginsenosides and p-nitrophenyl-a-L-rhamnopyranoside (pNPR) could not be hydrolyzed by the enzyme from C. lunata. (c) 2007 Elsevier Ltd. All rights reserved.
A furostanol glycoside from rhizomes of Dioscorea collettii var. hypoglauca