摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

D-glycerate

中文名称
——
中文别名
——
英文名称
D-glycerate
英文别名
(2R)-2,3-dihydroxypropanoate
D-glycerate化学式
CAS
——
化学式
C3H5O4
mdl
——
分子量
105.07
InChiKey
RBNPOMFGQQGHHO-UWTATZPHSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.9
  • 重原子数:
    7
  • 可旋转键数:
    1
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    80.6
  • 氢给体数:
    2
  • 氢受体数:
    4

反应信息

  • 作为反应物:
    描述:
    D-glycerate 在 [Fe-S]-dehydratase from Paralcaligenes ureilyticus 、 magnesium chloride 、 BSA 作用下, 以 aq. buffer 为溶剂, 生成 piruvate
    参考文献:
    名称:
    聚合转化–使用混杂的生物催化剂从异质生物质中无细胞合成化学物质
    摘要:
    已经提出了由木质纤维素生物质生产化学品的替代品。然而,生物质利用的一个固有挑战是底物的异质性,导致水解后存在混合糖。混合糖的发酵通常导致差的产量和多种副产物的产生,因此使随后的下游加工复杂化。因此,近年来已经开发了系统生物催化来应对这一挑战。在这项工作中,使用基于序列的发现方法,鉴定了几种具有广泛底物混杂的新型酶,这些酶是D-木糖和L转化的合适生物催化剂。-阿拉伯糖,植物生物量中半纤维素的两个主要成分。这些混杂酶使得D-木糖和L-阿拉伯糖能够同时进行生物转化,从而以最大的3 g L -1 h -1的产率和> 95%的产率产生1,4-丁二醇(BDO)。使用O 2作为辅因子循环的辅助底物,该模型系统进一步适应于由戊糖生产α-酮戊二酸(2-KG)的最大生产率,达到4.2 g L -1 h -1和99%的产率。为了验证我们系统的潜在适用性,我们尝试扩大D-木糖和L的BDO和2-KG产量-阿拉伯糖。
    DOI:
    10.1039/d0gc04288a
  • 作为产物:
    描述:
    D-(+)-甘油醛β-烟酰胺腺嘌呤二核苷酸 、 D-glyceraldehyde dehydrogenase from Thermoplasma acidophilum 作用下, 以 aq. buffer 为溶剂, 生成 D-glycerate
    参考文献:
    名称:
    聚合转化–使用混杂的生物催化剂从异质生物质中无细胞合成化学物质
    摘要:
    已经提出了由木质纤维素生物质生产化学品的替代品。然而,生物质利用的一个固有挑战是底物的异质性,导致水解后存在混合糖。混合糖的发酵通常导致差的产量和多种副产物的产生,因此使随后的下游加工复杂化。因此,近年来已经开发了系统生物催化来应对这一挑战。在这项工作中,使用基于序列的发现方法,鉴定了几种具有广泛底物混杂的新型酶,这些酶是D-木糖和L转化的合适生物催化剂。-阿拉伯糖,植物生物量中半纤维素的两个主要成分。这些混杂酶使得D-木糖和L-阿拉伯糖能够同时进行生物转化,从而以最大的3 g L -1 h -1的产率和> 95%的产率产生1,4-丁二醇(BDO)。使用O 2作为辅因子循环的辅助底物,该模型系统进一步适应于由戊糖生产α-酮戊二酸(2-KG)的最大生产率,达到4.2 g L -1 h -1和99%的产率。为了验证我们系统的潜在适用性,我们尝试扩大D-木糖和L的BDO和2-KG产量-阿拉伯糖。
    DOI:
    10.1039/d0gc04288a
点击查看最新优质反应信息

文献信息

  • d-GLYCERATE 3-KINASE, the Last Unknown Enzyme in the Photorespiratory Cycle in Arabidopsis, Belongs to a Novel Kinase Family
    作者:Ralf Boldt、Christoph Edner、Üner Kolukisaoglu、Martin Hagemann、Wolfram Weckwerth、Stefanie Wienkoop、Katja Morgenthal、Hermann Bauwe
    DOI:10.1105/tpc.105.033993
    日期:2005.8
    d-GLYCERATE 3-KINASE (GLYK; EC 2.7.1.31) catalyzes the concluding reaction of the photorespiratory C2 cycle, an indispensable ancillary metabolic pathway to the photosynthetic C3 cycle that enables land plants to grow in an oxygen-containing atmosphere. Except for GLYK, all other enzymes that contribute to the C2 cycle are known by their primary structures, and the encoding genes have been identified. We have purified and partially sequenced this yet missing enzyme from Arabidopsis thaliana and identified it as a putative kinase-annotated single-copy gene At1g80380. The exclusive catalytic properties of the gene product were confirmed after heterologous expression in Escherichia coli. Arabidopsis T-DNA insertional knockout mutants show no GLYK activity and are not viable in normal air; however, they grow under elevated CO2, providing direct evidence of the obligatory nature of the ultimate step of the C2 cycle. The newly identified GLYK is both structurally and phylogenetically distinct from known glycerate kinases from bacteria and animals. Orthologous enzymes are present in other plants, fungi, and some cyanobacteria. The metabolic context of GLYK activity in fungi and cyanobacteria remains to be investigated.
    d-甘油酸3-激酶(GLYK;EC 2.7.1.31)催化光呼吸C2循环的最终反应,这是光合C3循环中不可或缺的辅助代谢途径,使陆地植物能够在含氧环境中生长。除了GLYK,所有其他参与C2循环的酶都已知其初级结构,并且编码基因也已确定。我们已经从拟南芥中纯化了这种缺失的酶并进行了部分测序,并将其确定为推测的激酶注释单拷贝基因At1g80380。在大肠杆菌中异源表达后,基因产物的独特催化特性得到了证实。拟南芥T-DNA插入敲除突变体没有GLYK活性,在正常空气中无法存活;然而,它们在CO2浓度升高的情况下生长,这为C2循环最终步骤的必要性质提供了直接证据。新发现的GLYK在结构和系统发育上与细菌和动物中的已知甘油酸激酶不同。同源酶存在于其他植物、真菌和一些蓝藻中。真菌和蓝藻中GLYK活性的代谢背景仍有待研究。
  • Glycerate kinase from leaves of C3 plants
    作者:Mark R. Schmitt、Gerald E. Edwards
    DOI:10.1016/0003-9861(83)90217-5
    日期:1983.7
    D-Glycerate-3-kinase (EC 2.7.1.31) in six C3 species, including dicots (Pisum sativum, Spinacea oleracea, Antirrhinum majus) and monocots (Secale cereale, Hordeum vulgare, Avena sativa), ranged in activity from 44 to 353 mumol X mg chl-1 X h-1. Studies with protoplast extracts of these species indicate that the enzyme is localized in the chloroplasts. Glycerate kinase was partially purified from Secale (rye, 288-fold)
    六个C3物种中的D-甘油3激酶(EC 2.7.1.31),包括双子叶植物(Pisum sativum,菠菜,甜菜,Antirrhinum majus)和单子叶植物(SECale谷类,大麦(Hordeum vulgare),燕麦),活动范围从44至353。 mumol X mg chl-1 X h-1。这些物种的原生质体提取物的研究表明,该酶位于叶绿体中。通过DEAE-纤维素色谱,蔗糖梯度离心和色谱聚焦,从SECale(黑麦,288倍)和Pisum(豌豆,252倍)叶绿体中部分纯化了甘油激酶。两种物种的酶均显示出相似的物理(Mr = 41,000,pI = 4.6-4.7)和动力学(Km ATP = 655至692 microM,Km D-甘油酸酯= 180-188 microM)性质。酶的活性对测定pH从6.4到9.0的变化以及能电荷从0.4到1.0的变化基本不敏感。黑麦甘油酸激酶能够利用
  • Purification and Characterization of a New NAD+-Dependent Enzyme, L-Tartrate Decarboxylase, from Pseudomonas sp. Group Ve-2
    作者:Setsuo Furuyoshi、Yoshito Nawa、Nariyoshi Kawabata、Hidehiko Tanaka、Kenji Soda
    DOI:10.1093/oxfordjournals.jbchem.a123613
    日期:1991.10
    A new enzyme, L-tartrate decarboxylase, was found in cells of Pseudomonas sp. group Ve-2. The enzyme was purified to homogeneity and characterized. The enzyme requires K+, Mg2+, and NAD+ for L-tartrate decarboxylation. The dependence of the enzymatic decarbox-ylation on NAD+ suggests that the decarboxylation involves redox reactions of the substrate. The enzyme catalyzes NAD+-linked oxidative decarboxylation of D-malate as well. The enzyme is composed of four subunits with identical molecular weight (Mr 40,000). The apparent Michaelis constants for L-tartrate and NAD+ are 7.0 and 1.1 mM, respectively. The cofactor requirements and the physical properties of the enzyme were similar to those of L-tartrate dehydrogenase-D-malate dehydrogenase from Rhodopseudomanas sphaeroides, and tartrate dehydrogenase from P. putida.
    在假单胞菌属Ve-2组的细胞中发现了新的酶——L-酒石酸脱羧酶。该酶被纯化为均一性并进行了表征。该酶需要K+、Mg2+和NAD+进行L-酒石酸脱羧反应。酶促脱羧反应对NAD+的依赖性表明脱羧反应涉及底物的氧化还原反应。该酶还催化NAD+连接的D-苹果酸氧化脱羧反应。该酶由四个亚基组成,分子量相同(Mr 40,000)。L-酒石酸NAD+的表观Michaelis常数分别为7.0和1.1 mM。该酶的辅因子需求和物理性质与罗多假单胞菌属球形假单胞菌的L-酒石酸脱氢酶-D-苹果酸脱氢酶和P. putida的酒石酸脱氢酶相似。
  • A Cytosolic Pathway for the Conversion of Hydroxypyruvate to Glycerate during Photorespiration in <i>Arabidopsis</i>
    作者:Stefan Timm、Adriano Nunes-Nesi、Tiit Pärnik、Katja Morgenthal、Stefanie Wienkoop、Olav Keerberg、Wolfram Weckwerth、Leszek A. Kleczkowski、Alisdair R. Fernie、Hermann Bauwe
    DOI:10.1105/tpc.108.062265
    日期:2008.12.3
    Abstract

    Deletion of any of the core enzymes of the photorespiratory cycle, one of the major pathways of plant primary metabolism, results in severe air-sensitivity of the respective mutants. The peroxisomal enzyme hydroxypyruvate reductase (HPR1) represents the only exception to this rule. This indicates the presence of extraperoxisomal reactions of photorespiratory hydroxypyruvate metabolism. We have identified a second hydroxypyruvate reductase, HPR2, and present genetic and biochemical evidence that the enzyme provides a cytosolic bypass to the photorespiratory core cycle in Arabidopsis thaliana. Deletion of HPR2 results in elevated levels of hydroxypyruvate and other metabolites in leaves. Photosynthetic gas exchange is slightly altered, especially under long-day conditions. Otherwise, the mutant closely resembles wild-type plants. The combined deletion of both HPR1 and HPR2, however, results in distinct air-sensitivity and a dramatic reduction in photosynthetic performance. These results suggest that photorespiratory metabolism is not confined to chloroplasts, peroxisomes, and mitochondria but also extends to the cytosol. The extent to which cytosolic reactions contribute to the operation of the photorespiratory cycle in varying natural environments is not yet known, but it might be dynamically regulated by the availability of NADH in the context of peroxisomal redox homeostasis.

    摘要

    删除任何光呼吸循环的核心酶之一,这是植物主要代谢途径之一,会导致相应突变体的严重空气敏感性。过氧化物酶体酶羟丙酸还原酶(HPR1)是唯一的例外。这表明光呼吸羟丙酸代谢存在额外的过氧化物酶体外反应。我们已经鉴定出第二个羟丙酸还原酶HPR2,并提供遗传和生化证据表明该酶在阿拉伯芥细胞质中提供了一种绕过光呼吸核心循环的途径。删除HPR2会导致叶片中羟丙酸和其他代谢物的平升高。光合气体交换略有改变,特别是在长日照条件下。否则,该突变体与野生型植物非常相似。然而,同时删除HPR1和HPR2会导致明显的空气敏感性和光合性能的显著降低。这些结果表明,光呼吸代谢不仅局限于叶绿体、过氧化物体和线粒体,还延伸到细胞质。细胞质反应对光呼吸循环在不同自然环境中的作用程度尚不清楚,但可能在过氧化物体氧化还原平衡的背景下动态调节NADH的可用性。

  • Crystal structure of a NAD-dependent d-glycerate dehydrogenase at 2·4 Å resolution
    作者:Jonathan D. Goldberg、Toyokazu Yoshida、Peter Brick
    DOI:10.1016/0022-2836(94)90016-7
    日期:1994.3
    D-Glycerate dehydrogenase (GDH) catalyzes the NADH-linked reduction of hydroxypyruvate to D-glycerate. GDH is a member of a family of NAD-dependent dehydrogenases that is characterized by a specificity for the D-isomer of the hydroxyacid substrate. The crystal structure of the apoenzyme form of GDH from Hyphomicrobium methylovorum has been determined by the method of isomorphous replacement and refined
    D-甘油脱氢酶(GDH)催化NADH连接的羟基丙酮酸还原为D-甘油酸酯。GDH是NAD依赖性脱氢酶家族的成员,其特征在于对羟酸底物的D-异构体的特异性。已经通过同构置换的方法确定了来自甲基次磷酸盐的GDH的脱辅酶的脱辅酶形式的晶体结构,并使用限制最小二乘法在2.4 A的分辨率下进行了精制。对于在10.0和2.4 A分辨率之间测得的所有24,553个反射,晶体学R因子为19.4%。GDH分子是由分子量38,000的亚基组成的对称二聚体,与另一种NAD依赖性酶甲酸脱氢酶具有明显的结构同源性。GDH亚基由两个结构相似的结构域组成,它们通过2倍对称性彼此近似相关。域被形成假定的NAD和底物结合位点的深裂分开。基于与其他NAD依赖性脱氢酶的NAD结合结构域的紧密结构相似性,已将一个结构域确定为NAD结合结构域。第二结构域的拓扑结构不同于其他脱氢酶的各种催化结构域中的拓扑结构。已经建立了GDH的三元复
查看更多