摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(E)-4-(4-isopropylphenyl)-4-oxo-2-butenoic acid phenylamide | 1220094-90-5

中文名称
——
中文别名
——
英文名称
(E)-4-(4-isopropylphenyl)-4-oxo-2-butenoic acid phenylamide
英文别名
(E)-4-oxo-N-phenyl-4-(4-propan-2-ylphenyl)but-2-enamide
(E)-4-(4-isopropylphenyl)-4-oxo-2-butenoic acid phenylamide化学式
CAS
1220094-90-5
化学式
C19H19NO2
mdl
——
分子量
293.365
InChiKey
DANIZLFFXXINRO-OUKQBFOZSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.8
  • 重原子数:
    22
  • 可旋转键数:
    5
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.16
  • 拓扑面积:
    46.2
  • 氢给体数:
    1
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    4-苄基哌啶(E)-4-(4-isopropylphenyl)-4-oxo-2-butenoic acid phenylamide二氯甲烷甲苯 为溶剂, 以100%的产率得到2-(4-benzylpiperidinyl)-4-(4-isopropylphenyl)-4-oxo-N-phenylbutanamide
    参考文献:
    名称:
    Structural modifications of 4-aryl-4-oxo-2-aminylbutanamides and their acetyl- and butyrylcholinesterase inhibitory activity. Investigation of AChE–ligand interactions by docking calculations and molecular dynamics simulations
    摘要:
    Congeneric set of thirty-eight 4-aryl-4-oxo-2-(N-aryl/cycloalkyl)butanamides has been designed, synthesized and evaluated for acetyl- and butyrylcholinesterase inhibitory activity. Structural variations included cycloalkylamino group attached to C2 position of butanoyl moiety, and variation of amido moiety of molecules. Twelve compounds, mostly piperidino and imidazolo derivatives, inhibited AChE in low micromolar range, and were inactive toward BChE. Several N-methylpiperazino derivatives showed inhibition of BChE in low micromolar or submicromolar concentrations, and were inactive toward AChE. Therefore, the nature of the cycloalkylamino moiety governs the AChE/BChE selectivity profile of compounds. The most active AChE inhibitor showed mixed-type inhibition modality, indicating its binding to free enzyme and to enzyme-substrate complex. Thorough docking calculations of the seven most potent AChE inhibitors from the set, showed that the hydrogen bond can be formed between amide -NH- moiety of compounds and -OH group of Tyr 124. The 10 ns unconstrained molecular dynamic simulation of the AChE- compound 18 complex shows that this interaction is the most persistent. This is, probably, the major anchoring point for the binding. (C) 2014 Elsevier Masson SAS. All rights reserved.
    DOI:
    10.1016/j.ejmech.2014.05.008
  • 作为产物:
    描述:
    异丙苯 在 aluminum (III) chloride 、 三氯氧磷 作用下, 以 四氢呋喃二氯甲烷 为溶剂, 生成 (E)-4-(4-isopropylphenyl)-4-oxo-2-butenoic acid phenylamide
    参考文献:
    名称:
    (E)-4-Aryl-4-oxo-2-butenoic acid amides, chalcone–aroylacrylic acid chimeras: Design, antiproliferative activity and inhibition of tubulin polymerization
    摘要:
    Antiproliferative activity of twenty-nine (E)-4-aryl-4-oxo-2-butenoic acid amides against three human tumor cell lines (HeLa, FemX, and K562) is reported. Compounds showed antiproliferative activity in one-digit micromolar to submicromolar concentrations. The most active derivatives toward all the cell lines tested bear alkyl substituents on the aroyl moiety of the molecules. Fourteen compounds showed tubulin assembly inhibition at concentrations <20 mu M. The most potent inhibitor of tubulin assembly was unsubstituted compound 1, with IC50 = 2.9 mu M. Compound 23 had an oral LD50 in vivo of 45 mg/kg in mice. Cell cycle analysis on K562 cells showed that compounds 1, 2 and 23 caused accumulation of cells in the G2/M phase, but inhibition of microtubule polymerization is not the principal mode of action of the compounds. Nevertheless, they may be useful leads for the design of a new class of antitubulin agents. (C) 2013 Elsevier Masson SAS. All rights reserved.
    DOI:
    10.1016/j.ejmech.2013.01.006
点击查看最新优质反应信息

文献信息

  • 4-Aryl-4-oxo-N-phenyl-2-aminylbutyramides as acetyl- and butyrylcholinesterase inhibitors. Preparation, anticholinesterase activity, docking study, and 3D structure–activity relationship based on molecular interaction fields
    作者:Maja D. Vitorović-Todorović、Ivan O. Juranić、Ljuba M. Mandić、Branko J. Drakulić
    DOI:10.1016/j.bmc.2009.12.042
    日期:2010.2
    literature, confirmed that alkyl substitution on aroyl moiety of molecules is requisite for inhibition activity. The presence of hydrophobic moiety at close distance from hydrogen bond acceptor has favorable influence on inhibition potency. Docking studies show that compounds probably bind in the middle of the AChE active site gorge, but are buried deeper inside BChE active site gorge, as a consequence
    4-芳基-4-氧代-N的合成及抗胆碱酯酶活性据报道,新型的可逆的,中等效力的胆碱酯酶抑制剂-苯基-2-氨基丁基丁酰胺。芳酰基部分上的简单取代基变化将抗AChE活性改变了两个数量级。丁酸部分2位的杂(ali)环的取代和类型也决定了AChE / BChE的选择性。最有效的化合物表现出混合型抑制作用,表明它们与游离酶和酶-底物复合物结合。对报道的化合物以及具有从文献中获得的具有类似效力的化合物的与排列无关的3D QSAR研究证实,分子的芳酰基部分上的烷基取代是抑制活性所必需的。距离氢键受体很近的疏水部分的存在对抑制效能具有有利的影响。
  • Reactivity of (E)-4-aryl-4-oxo-2-butenoic acid phenylamides with piperidine and benzylamine: kinetic and theoretical study
    作者:Ilija N. Cvijetić、Maja D. Vitorović-Todorović、Ivan O. Juranić、Đura J. Nakarada、Milica D. Milosavljević、Branko J. Drakulić
    DOI:10.1007/s00706-014-1223-8
    日期:2014.8
    Rates of the aza-Michael addition of piperidine and benzylamine to thirteen (E)-4-aryl-4-oxo-2-butenoic acid phenylamides (AACPs) are reported. Progress of the reaction was monitored by UV/Vis spectroscopy. The 2D NMR spectra confirmed regioselectivity of the reactions. Piperidine and benzylamine provide exclusively beta-adducts in respect to the aroyl keto group. Influence of the substituents of the aroyl phenyl ring of AACPs on the rate of the reaction was quantified by Hammett substituent constants, partial atomic charges, and the energies of frontier orbitals. Good correlations between second-order rate constants and the Hammett substituent constants were obtained (r = 0.98, piperidine; r = 0.94, benzylamine) for para-, and meta-, para-substituted derivatives. Best correlations were obtained with the energies of the lowest unoccupied molecular orbitals of compounds, derived from the MP2 level of theory. Calculated UV/Vis spectra of representative AACPs and their Michael adduct with piperidine and benzylamine are in fair agreement with experimentally obtained data.
  • Reactivity of (E)-4-aryl-4-oxo-2-butenoic acid arylamides toward 2-mercaptoethanol. A LFER study
    作者:Ilija N. Cvijetić、Maja D. Vitorović-Todorović、Ivan O. Juranić、Branko J. Drakulić
    DOI:10.1007/s00706-013-1084-6
    日期:2013.12
    The reactivity of fifteen (E)-4-aryl-4-oxo-2-butenoic (aroylacrylic) acid arylamides toward thiols was studied, measuring the rate constants of the addition of model thiol nucleophile, 2-mercaptoethanol. The influence of the variation of the substituents on the phenyl rings on the rate of reaction was quantified using the Hammett substituent constants and descriptors derived from ab initio or semiempirical calculations (atomic charges, HOMO, and LUMO). Statistically significant linear correlations between second-order rate constants and Hammett substituent constants, as well as energies of LUMO orbitals, were obtained. Substituents on both aroyl and arylamido moieties were shown to influence the reactivity of studied compounds toward thiols. The regioselectivity of reaction was confirmed by NMR spectroscopy. Exclusively beta-addition product with respect to the aroyl keto group was obtained. The determined enthalpy and entropy of activation were found to be in agreement with the proposed reaction mechanism, which includes a highly ordered transition state.
  • The in vitro protective effects of the three novel nanomolar reversible inhibitors of human cholinesterases against irreversible inhibition by organophosphorous chemical warfare agents
    作者:Maja D. Vitorović-Todorović、Franz Worek、Andrej Perdih、Sonja Đ. Bauk、Tamara B. Vujatović、Ilija N. Cvijetić
    DOI:10.1016/j.cbi.2019.06.027
    日期:2019.8
    Acetylcholinesterase (AChE) is an enzyme which terminates the cholinergic neurotransmission, by hydrolyzing acetylcholine at the nerve and nerve-muscle junctions. The reversible inhibition of AChE was suggested as the pre-treatment option of the intoxications caused by nerve agents. Based on our derived 3D-QSAR model for the reversible AChE inhibitors, we designed and synthesized three novel compounds 8-10, joining the tacrine and aroylacrylic acid phenylamide moieties, with a longer methylene chain to target two distinct, toplogically separated anionic areas on the AChE. The targeted compounds exerted low nanomolar to subnanomolar potency toward the E. eel and human AChE's as well as the human BChE and showed mixed inhibition type in kinetic studies. All compounds were able to slow down the irreversible inhibition of the human AChE by several nerve agents including tabun, soman and VX, with the estimated protective indices around 5, indicating a valuable level of protection. Putative noncovalent interactions of the selected ligand 10 with AChE active site gorge were finally explored by molecular dynamics simulation suggesting a formation of the salt bridge between the protonated linker amino group and the negatively charged Asp74 carboxylate side chain as a significant player for the successful molecular recognition in line with the design strategy. The designed compounds may represent a new class of promising leads for the development of more effective pre-treatment options.
  • (E)-4-Aryl-4-oxo-2-butenoic acid amides, chalcone–aroylacrylic acid chimeras: Design, antiproliferative activity and inhibition of tubulin polymerization
    作者:Maja D. Vitorović-Todorović、Aleksandra Erić-Nikolić、Branka Kolundžija、Ernest Hamel、Slavica Ristić、Ivan O. Juranić、Branko J. Drakulić
    DOI:10.1016/j.ejmech.2013.01.006
    日期:2013.4
    Antiproliferative activity of twenty-nine (E)-4-aryl-4-oxo-2-butenoic acid amides against three human tumor cell lines (HeLa, FemX, and K562) is reported. Compounds showed antiproliferative activity in one-digit micromolar to submicromolar concentrations. The most active derivatives toward all the cell lines tested bear alkyl substituents on the aroyl moiety of the molecules. Fourteen compounds showed tubulin assembly inhibition at concentrations <20 mu M. The most potent inhibitor of tubulin assembly was unsubstituted compound 1, with IC50 = 2.9 mu M. Compound 23 had an oral LD50 in vivo of 45 mg/kg in mice. Cell cycle analysis on K562 cells showed that compounds 1, 2 and 23 caused accumulation of cells in the G2/M phase, but inhibition of microtubule polymerization is not the principal mode of action of the compounds. Nevertheless, they may be useful leads for the design of a new class of antitubulin agents. (C) 2013 Elsevier Masson SAS. All rights reserved.
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸 黄黄质 黄钟花醌 黄质醛 黄褐毛忍冬皂苷A 黄蝉花素 黄蝉花定