Design, synthesis and structure-activity relationships of novel macrolones: Hybrids of 2-fluoro 9-oxime ketolides and carbamoyl quinolones with highly improved activity against resistant pathogens
Constitutively erythromycin-resistant apathogens are more difficult to address than inducibly resistant and efflux-resistant strains. Three series of the 4th generation 2-fluoro 9-oxime erythromycin ketolides were synthesized and evaluated. Incorporation of substituted heteroaryl groups (a - m), in contrast to previously reported the unsubstituted heteroaryl groups, proved to the beneficial for enhancement of the activities of the 9-propgargyl ketolide 8 series and the 9-allyl ketolide 14 series. But these aryl groups (a - m) cannot supply the resulting compounds 8 and 14, unlike corresponding the 6-allyl ketolide 20 series, with activity against constitutively resistant Streptococcus pneumoniae. However, hybrids of macrolides and quinolones (8, 14 and 20, Ar = n - t) exhibited not only high activities against susceptible, inducibly erm-mediated resistant, and efflux-mediated resistant strains, but also significantly improved potencies against constitutively resistant Streptococcus pneumoniae and Streptococcus pyogenes. The capacity was highlighted by introduction of newly designed carbamoyl quinolones (q, r, s and t) rather than commonly seen carboxy quinolones (o and p) as the pharmacophores. Structure-activity relationships and molecular modelling indicated that 8r, 14r and 20q may have different binding sites compared to current erythromycins. Moreover, 8r, 14r and 20q have 2.5-3.6 times prolonged half-life and 2.3- to 2.6-fold longer mean residence time in vivo over telithromycin. These findings pave the way for rational design of novel non-telithromycin macrolides that target new binding sites within bacterial ribosomes. (C) 2019 Elsevier Masson SAS. All rights reserved.
Synthesis and biological activity of 4″-O-acyl derivatives of 14- and 15-membered macrolides linked to ω-quinolone-carboxylic unit
The synthesis and antimicrobial activity of a new class of macrolide antibiotics which consist of a macrolide scaffold and a quinolone unit covalently connected by an appropriate linker are described. Optimization of several synthetic steps and structural properties of lead compound 26 are discussed. Promising antibacterial properties of this compound and some of its analogues are reported. (C) 2010 Elsevier Ltd. All rights reserved.