Synthesis and structure–activity relationships and effects of phenylpropanoid amides of octopamine and dopamine on tyrosinase inhibition and antioxidation
摘要:
Phenylpropanoid amides of octopamine (OA) 1a-1e and dopamine (DA) 2a-2e were synthesised and the structure-activity relationships (SARs) for antioxidant and tyrosinase inhibition activities were analysed. Among synthesised compounds, 2c, which contains two catechol moieties, exhibited the most DPPH radical-scavenging activity (EC50 = 16.2 +/- 2.41 mu M), and id exhibited significant tyrosinase inhibitory activity (IC50 = 5.3 +/- 1.8 mu M). Interestingly, with the same acid moiety, OA derivatives showed more inhibitory effect on tyrosinase than did compounds derived from DA, whereas DA derivatives were found to have higher antioxidant activity than compounds derived from OA. The relationship between their structures and their potencies, demonstrated in the current study, will be useful for the design of optimal agents. (C) 2012 Elsevier Ltd. All rights reserved.
Synthetic hydroxycinnamoylamides of amino acids (precursors of aromatic amines) were studied for their antioxidant activity in vitro by two antioxidant assay systems, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and inhibition of lipid peroxidation (LPO). Furthermore, these compounds were tested and compared with their corresponding cinnamoylamides of aromatic amines for their inhibitory activity using mushroom tyrosinase. In addition, five hydroxycinnamoyl amino acid amides were investigated for their antimicrobial effect. Structure-activity relationships analysis disclosed that the presence of catechol rest at amino acid or at benzene moieties of substituted cinnamic acid amides significantly scavenged DPPH radical and inhibited LPO. The results obtained by LPO clearly expressed the positive influence of indole moiety on the activity. Moreover, the existence of p-hydroxy substituted cinnamic acid moiety leads to better tyrosinase inhibition. Amongst the tested compounds, amides of p-coumaroyldopamine or tyramine and their corresponding amino acid precursors are the most potent tyrosinase inhibitors.