摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

唑啉草酯 | 243973-20-8

中文名称
唑啉草酯
中文别名
8-(2,6-二乙基-4-甲基-苯基)-9-氧-1,2,4,5-4氢-9H-吡唑[1,2-d][1,4,5]氧二氮卓-7-基酯2,2-二甲基-丙炔酸;8-(2,6-二乙基-4-甲基-苯基)-1,2,4,5-4氢-7-氧-7H-吡唑[1,2-d][1,4,5]氧二氮卓-9-基2,2-二甲基丙酸酯
英文名称
pinoxaden
英文别名
2,2-dimethylpropionic acid 8-(2,6-diethyl-4-methylphenyl)-9-oxo-1,2,4,5-tetrahydro-9H-pyrazolo[1,2-d][1,4,5]oxadiazepin-7-yl ester;8-(2,6-diethyl-4-methyl phenyl)-7-oxo-1,2,4,5-tetrahydro-7-H-pyrazolo[1,2-d][1,4,5]oxadiazepin-9-yl pivalate;[8-(2,6-diethyl-4-methylphenyl)-7-oxo-1 ,2,4,5- tetrahydropyrazolo[1,2-d][1,4,5]oxadiazepin-9-yl] 2,2-dimethylpropanoate;[8-(2,6-diethyl-4-methylphenyl)-7-oxo-1,2,4,5-tetrahydropyrazolo[1,2-d][1,4,5]oxadiazepin-9-yl] 2,2-dimethylpropanoate
唑啉草酯化学式
CAS
243973-20-8
化学式
C23H32N2O4
mdl
——
分子量
400.518
InChiKey
MGOHCFMYLBAPRN-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    521.3±60.0 °C(Predicted)
  • 密度:
    1.17±0.1 g/cm3(Predicted)
  • LogP:
    4.110 (est)
  • 颜色/状态:
    Fine white powder
  • 气味:
    Odorless
  • 熔点:
    120.5-121.6 °C
  • 溶解度:
    In water, 220 mg/L at 25 °C
  • 蒸汽压力:
    2.0X10-4 mPa at 20 °C; 4.6X10-4 mPa at 25 °C /SRC: 3.5X10-9 mm Hg at 25 °C/

计算性质

  • 辛醇/水分配系数(LogP):
    4.6
  • 重原子数:
    29
  • 可旋转键数:
    6
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.57
  • 拓扑面积:
    59.1
  • 氢给体数:
    0
  • 氢受体数:
    5

ADMET

代谢
从家畜代谢研究中,选择了浓度大于10%的总放射性残留物作为关注的家畜残留物。因此,除了母化合物外,反刍动物的关注残留物确定为M2和M4(游离和结合态),家禽的关注残留物确定为M2、M4(游离和结合态)和M6。M4是家畜中的主要代谢物。((14)C-苯基)-pinoxaden和((14)C-苯基)-M4是在两个独立研究中喂给反刍动物的唯一化合物。
From livestock metabolism studies, the residues with concentrations >10% total radioactive residue were chosen as residues of concern for livestock. Therefore, besides the parent compound, M2 and M4 (free and conjugated) for ruminants and M2, M4 (free and conjugated), and M6 for poultry were determined to be residues of concern. M4 is the major metabolite in the livestock. ((14)Cphenyl)-pinoxaden and ((14)C-phenyl)-M4 were the only compounds that were fed to ruminants in two separate studies.
来源:Hazardous Substances Data Bank (HSDB)
代谢
吡inoxaden在大鼠体内的代谢主要涉及酯部分最初的水解,形成代谢物M2(NOA 407854),然后广泛通过尿液和粪便排出。在较小程度上,代谢物M2还通过羟基化、脱烷基化、环裂解、环形成和结合转化为多种次要代谢物。所提出的途径还得到了附带的体外研究的支持,该研究表明,吡noxaden在大鼠血浆中迅速水解为M2(半衰期约为0.1分钟),浓度高达100 uM(约40 ppm)。
The metabolism of pinoxaden in rats primarily involves the initial hydrolysis of the ester moiety to form metabolite M2 (NOA 407854), which is then extensively excreted in the urine and feces. To a minor extent, metabolite M2 is also further metabolized via hydroxylation, dealkylation, ring cleavage, ring formation, and conjugation into a wide variety of minor metabolites. The proposed pathway is also supported by the appended in vitro study, which indicates that pinoxaden is rapidly hydrolyzed to M2 in rat plasma (half life = approximately 0.1 min) at concentrations up to 100 uM (approximately 40 ppm).
来源:Hazardous Substances Data Bank (HSDB)
代谢
在一只...兔子的代谢研究中,通过胃管给雌性Chbb-HM兔子(每剂量3只)口服单一剂量的(苯基-1-(14)C) NOA 407855(/pinoxaden/ 批号/批量 # ILA-8.1B-5 和 ILA-8.1C-1B;放射性纯度98.9%)在0.5%羧甲基纤维素和0.1% Tween 80的水性溶液中,以0.5和300 mg/kg的名义剂量水平给药。在给药后长达168小时内收集尿液、粪便和血液样本。通过HPLC、TLC和LC/MS对尿液和粪便中的代谢物进行定量和鉴定。...基本上所有在尿液和粪便中排出的代谢物都被鉴定出来(92.8-97.7%剂量),且代谢物轮廓与剂量水平无关。对于两个剂量组,代谢物M2(NOA 407854)被鉴定为尿液(88.6-91.0%剂量)和粪便(3.6-6.2%剂量)中的主要成分。尿液和/或粪便中还鉴定出了少量代谢物M4(0.4-0.6%剂量)、K4(0.2%剂量)、M12(0.2%剂量)和K3(0.1%剂量)。未鉴定的代谢物占总剂量小于或等于0.6%。在兔子中,NOA 407885的代谢主要通过水解酯键形成代谢物M2(NOA 407854),这是尿液和粪便中的主要代谢物(92-97%剂量)。次要的二次反应包括:在苯基的4-甲基上发生羟基化产生M4(在尿液和粪便中排出);或M2的葡萄糖苷酸化形成代谢物M12。兔子中的代谢途径与大鼠基本相同。
In a ... rabbit metabolism study, a single oral dose of (Phenyl-1-(14)C) NOA 407855 (/pinoxaden/ Batch/lot # ILA-8.1B-5 and ILA-8.1C-1B; radiochemical purity $98.9%) was administered in aqueous 0.5% carboxymethylcellulose and 0.1% Tween 80 to female Chbb-HM rabbits (3/dose) via gavage at nominal dose levels of 0.5 and 300 mg/kg. Urine, feces, and blood samples were collected up to 168 hours after dosing. Metabolites in urine and feces were quantified and identified by HPLC, TLC, and LC/MS. ... Essentially all of the metabolites excreted in the urine and feces were identified (92.8-97.7% dose), and the metabolite profile was the same regardless of dose level. For both dose groups, Metabolite M2 (NOA 407854) was identified as the major component in both urine (88.6-91.0% dose) and feces (3.6-6.2% dose). Minor amounts of Metabolites M4 (0.4-0.6% dose), K4 (0.2% dose), M12 (0.2% dose) and K3 (0.1% dose) were also identified in urine and/or feces. Unidentified metabolites accounted for less than or equal to 0.6% dose. In rabbits, the metabolism of NOA 407885 proceeds predominantly by hydrolysis of the ester linkage to form Metabolite M2 (NOA 407854), which is the major metabolite in urine and feces (92-97% dose). Minor secondary reactions include either: hydroxylation at the 4-methyl group of the phenyl moiety to yield M4 (excreted in urine and feces); or glucuronidation of M2 to form metabolite M12. The metabolic pathway in the rabbit is essentially identical to the rat.
来源:Hazardous Substances Data Bank (HSDB)
代谢
在小白鼠代谢研究中,给4组雄性和雌性C57BL/10Jf/CD-1小白鼠口服了(pyr azol-3,5-(14)C) NOA 407855(皮诺克森/纯度大于或等于97.6%;批号ILA-76.3B ILA-76.3C),具体如下:(1)G1组口服1次或每天口服1次,剂量为1.4毫克/千克体重;(2)G2组口服1次或每天口服1次,剂量为140毫克/千克体重;饮食;(3)G3组喂食10毫克/千克的饮食;(4)G4组喂食1000毫克/千克的饮食。每个组的最大给药持续时间为18天。 口服NOA 407855后,小鼠的血液、尿液和粪便中的代谢物轮廓在性别、剂量水平、给药方法(口服vs.饮食)、给药持续时间(单次vs.多次)和时间收集上都是定性和定量独立的,尽管在粪便中观察到了一些定量变化。未检测到母体化合物。代谢物M2(NO A 407854)是三个基质中鉴定出的主要组分,占约67-93%的可提取血液放射性,69-89%的尿液总放射性,和35-75%的可提取粪便放射性。在血液(2-11%的可提取血液放射性)、尿液(5-14%的总放射性)和粪便(12-41%的可提取放射性)中也检测到大量的代谢物M4。每个基质中检测到的其余组分都是少量的(<8%的样品放射性),包括血液提取物中的5个组分、尿液中的8个组分和粪便提取物中的8-11个组分。通过LC/MS和LC/NMR分析从复合样品中分离出的馏分,证实了尿液和粪便中存在代谢物M2和M4。这些分析还鉴定了尿液中代谢物M13、M21、M50和M51的少量(<3%的样品放射性)和粪便提取物中代谢物M13、M19、M20、M22、M49和M50的少量。根据在血液、尿液和粪便中确定的代谢物及其相对丰度,NOA 407855在小鼠体内的代谢主要涉及将酯部分水解形成代谢物M2,这是尿液和粪便中主要排泄的组分。在较小的程度上,代谢物M2也可能经历一些次级反应,产生多种少量的代谢物。这些次级反应包括:羟基化、氧化、水解、脱烷基、成环和切断氧化二氮杂环中的醚键。
In a ... mouse metabolism study, (pyrazol-3,5-(14)C) NOA 407855 (/pinoxaden/ greater than or equal to 97.6% radiochemical purity; Lots ILA-76.3B ILA-76.3C) was administered to 4 groups of male and female C57BL/10Jf/CD-1 mice as follows: (I) Group G1 was given either a single-dose or repeated daily dose of 1.4 mg/kg body-weight by gavage; (ii) Group G2 was administered either a single-dose or repeated daily dose of 140 mg/kg body-weight by gavage; (iii) Group G3 was fed at 10 ppm in the diet; and (iv) Group G4 was fed a 1000 ppm diet. The maximum duration of dosing in each group was for 18 days. ... Following oral administration of NOA 407855 to mice either by gavage or in the diet, the metabolite profiles in blood, urine and feces were qualitatively and quantitatively independent of sex, dose level, dosing method (gavage vs. dietary), dosing duration (single vs. multiple doses) and time of collection, although some quantitative variations were observed in feces. Parent compound was not detected in blood, urine or feces. Metabolite M2 (NOA 407854) was the major component identified in all three matrices, accounting for approximately 67-93% of the extractable blood radioactivity, 69-89% of the total radioactivity in urine, and 35-75% of the radioactivity extractable from feces. Substantial amounts of Metabolite M4 were also detected in blood (2-11% extractable blood radioactivity), urine (5-14% of total radioactivity), and feces (12-41% of the extractable radioactivity). The remaining components detected in each matrix were minor (<8% of the sample radioactivity) and included five components in blood extracts, eight components in urine, and 8-11 components in fecal extracts. The presence of Metabolites M2 and M4 in urine and feces were confirmed by LC/MS and LC/NMR analyses of fractions isolated from composited samples. These analyses also identified minor amounts (<3% sample radioactivity) of Metabolites M13, M21, M50, and M51 in urine and Metabolites M13, M19, M20, M22, M49, and M50 in fecal extracts. Based on the metabolites identified in blood, urine and feces and their relative abundance, the metabolism of NOA 407855 in mice primarily involves hydrolysis of the ester moiety to form Metabolite M2, which is the primary component excreted in urine and feces. To a minor extent, Metabolite M2 may also undergo a number of secondary reactions to produce variety of minor metabolites. These secondary reactions include: hydroxylation, oxidation, hydrolysis, dealkylation, ring formation, and cleavage of the ether bond in the oxadiazepine moiety.
来源:Hazardous Substances Data Bank (HSDB)
代谢
在一项旨在研究血液中代谢物M2(NOA 407854)水平与饮食中摄入NOA 407855(吡唑草胺)的相关性的研究中,四组C57Bl/10JfCD-1小鼠(每组24只/性别/剂量)被喂食含有NOA 407855(97.2%活性成分,批号#EZ005006)的饮食,至少连续39天。两组在整个期间分别以1000或2500 ppm的剂量喂食;第三组以2500 ppm喂食7天,然后以5000 ppm至少连续喂食32天;第四组以2500 ppm喂食7天,然后以5000 ppm喂食14天,接着以7000 ppm至少连续喂食18天。第五组(每组3或4只/性别)来自同一来源和品种的小鼠作为整个研究期间的对照组。在第40和41天的血液中M2的平均浓度为:在1000 mg/kg剂量下为1.7-2.3 mg/kg,在2500 ppm剂量下为4.6-7.4 mg/kg,在5000 ppm剂量下为11.8-12.7 mg/kg,在7000 ppm剂量下为17.0-20.8 mg/kg。线性回归显示血液中M2的浓度与饮食中测试物质的浓度之间存在直接相关性,女性的R2为0.96,男性的R2为0.98。在任何剂量下,M2的血液浓度在性别之间或采血时间上没有明显差异。
In a ... study designed to correlate the levels of Metabolite M2 (NOA 407854) in the blood with the ingestion of NOA 407855 /pinoxaden/ in the diet, four groups of C57Bl/10JfCD-1 mice (24/sex/dose group) were fed diets containing NOA 407855 (97.2% ai, Lot #EZ005006) for at least 39 consecutive days. Two groups were fed diets containing NOA 407855 at 1000 or 2500 ppm for the entire period; the third group was fed at 2500 ppm for 7 days, followed by 5000 ppm for at least 32 consecutive days; and the fourth group was fed at 2500 ppm for 7 days, followed by 5000 ppm for 14 days, and then 7000 ppm for at least 18 days. A fifth group of mice (3 or 4/sex) of the same source and strain served as controls for the duration of the study. ... Concentrations of M2 in blood on Study days 40 and 41 averaged 1.7-2.3 mg/kg at 1000 mg/kg, 4.6-7.4 mg/kg at 2500 ppm, 11.8-12.7 mg/kg at 5000 ppm, and 17.0-20.8 mg/kg at 7000 ppm. Linear regression showed a direct correlation between the concentration of M2 in the blood and the concentration of the test material in the diet, with R2 = 0.96 for females and 0.98 for males. There were no apparent differences in M2 blood concentrations between sexes or time of blood sampling at any dose.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 解毒与急救
/SRP:/ 立即急救:确保已经进行了充分的中和。如果患者停止呼吸,请开始人工呼吸,最好使用需求阀复苏器、球囊阀面罩设备或口袋面罩,按训练操作。如有必要,执行心肺复苏。立即用缓慢流动的水冲洗受污染的眼睛。不要催吐。如果患者呕吐,让患者向前倾或将其置于左侧(如果可能的话,头部向下),以保持呼吸道畅通,防止吸入。保持患者安静,维持正常体温。寻求医疗帮助。 /毒物A和B/
/SRP:/ Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR if necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on the left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention. /Poisons A and B/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 解毒与急救
/SRP:/ 基本治疗:建立专利气道(如有需要,使用口咽或鼻咽气道)。如有必要,进行吸痰。观察呼吸不足的迹象,如有需要,协助通气。通过非循环呼吸面罩以10至15升/分钟的速度给予氧气。监测肺水肿,如有必要,进行治疗……。监测休克,如有必要,进行治疗……。预期癫痫发作,如有必要,进行治疗……。对于眼睛污染,立即用水冲洗眼睛。在运输过程中,用0.9%的生理盐水(NS)持续冲洗每只眼睛……。不要使用催吐剂。对于摄入,如果患者能够吞咽、有强烈的干呕反射且不流口水,则用温水冲洗口腔,并给予5毫升/千克,最多200毫升的水进行稀释……。在去污后,用干燥的无菌敷料覆盖皮肤烧伤……。/毒药A和B/
/SRP:/ Basic treatment: Establish a patent airway (oropharyngeal or nasopharyngeal airway, if needed). Suction if necessary. Watch for signs of respiratory insufficiency and assist ventilations if needed. Administer oxygen by nonrebreather mask at 10 to 15 L/min. Monitor for pulmonary edema and treat if necessary ... . Monitor for shock and treat if necessary ... . Anticipate seizures and treat if necessary ... . For eye contamination, flush eyes immediately with water. Irrigate each eye continuously with 0.9% saline (NS) during transport ... . Do not use emetics. For ingestion, rinse mouth and administer 5 mL/kg up to 200 mL of water for dilution if the patient can swallow, has a strong gag reflex, and does not drool ... . Cover skin burns with dry sterile dressings after decontamination ... . /Poisons A and B/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 解毒与急救
/SRP:/ 高级治疗:对于无意识、严重肺水肿或严重呼吸困难的病人,考虑进行口咽或鼻咽气管插管以控制气道。使用气囊面罩装置的正压通气技术可能有益。考虑使用药物治疗肺水肿……。对于严重的支气管痉挛,考虑给予β激动剂,如沙丁胺醇……。监测心率和必要时治疗心律失常……。开始静脉输注D5W /SRP: "保持开放",最低流量/。如果出现低血容量的迹象,使用0.9%生理盐水(NS)或乳酸林格氏液。对于伴有低血容量迹象的低血压,谨慎给予液体。注意液体过载的迹象……。使用地西泮或劳拉西泮治疗癫痫……。使用丙美卡因氢氯化物协助眼部冲洗……。 /Poisons A and B/
/SRP:/ Advanced treatment: Consider orotracheal or nasotracheal intubation for airway control in the patient who is unconscious, has severe pulmonary edema, or is in severe respiratory distress. Positive-pressure ventilation techniques with a bag valve mask device may be beneficial. Consider drug therapy for pulmonary edema ... . Consider administering a beta agonist such as albuterol for severe bronchospasm ... . Monitor cardiac rhythm and treat arrhythmias as necessary ... . Start IV administration of D5W /SRP: "To keep open", minimal flow rate/. Use 0.9% saline (NS) or lactated Ringer's if signs of hypovolemia are present. For hypotension with signs of hypovolemia, administer fluid cautiously. Watch for signs of fluid overload ... . Treat seizures with diazepam or lorazepam ... . Use proparacaine hydrochloride to assist eye irrigation ... . /Poisons A and B/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 人类毒性摘录
遗传毒性:在两项独立的哺乳动物细胞遗传学分析试验中,用人外周血制备淋巴细胞培养物,并暴露于SYN 502836(Pinoxaden tech.的代谢物;pinoxaden;99% a.i.,批号KI 6513/3M)在二甲基亚砜(DMSO)中,浓度分别为50、100、200、500、1000、1500、2000和2750微克/毫升,要么在3小时内有17小时的恢复期(试验1,±S9和试验2,+S9),要么在20小时内没有恢复期(试验2,-S9)。SYN 502836在最高2000微克/毫升(±S9)的浓度下进行了测试,这受到处理介质pH降低的限制。在试验1(+S9)中,当浓度大于或等于1000微克/毫升时,观察到细胞毒性(表现为减低的有丝分裂指数),在试验2(±S9)中,当浓度为2000微克/毫升时观察到细胞毒性。在任一试验中,无论是在S9存在还是不存在的情况下,均未观察到畸变频率(不包括间隙)的显著增加。所有试验中的阳性对照均诱导了适当的反应。在S9激活存在或不存在的情况下,没有证据表明染色体畸变超过背景。
/GENOTOXICITY/ In two independent trials of a mammalian cell cytogenetics assay, lymphocyte cultures were prepared from human peripheral blood and exposed to SYN 502836 (a metabolite of Pinoxaden tech.; pinoxaden; 99% a.i., Batch # KI 6513/3M) in dimethylsulfoxide (DMSO) at concentrations of 50, 100, 200, 500, 1000, 1500, 2000, and 2750 ug/mL for either 3 hours with a 17 hour recovery period (Trial 1, +/-S9 and Trial 2, +S9) or 20 hours with no recovery period (Trial 2, -S9). SYN 502836 was tested up to a maximum concentration of 2000 ug/mL (+/-S9), which was limited by reductions in the pH of the treatment medium. Cytotoxicity (as evidenced by reduced mitotic index) was noted at greater than or equal to 1000 ug/mL in Trial 1 (+S9) and at 2000 ug/mL in Trial 2 (+/-S9). No significant increases in aberration frequencies (excluding gaps) were observed in the presence or absence of S9 in either trial. The positive controls induced the appropriate response in all assays. There was no evidence of chromosome aberrations induced over background in the presence or absence of S9-activation. /SYN 502836/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 非人类毒性摘录
实验室动物:急性暴露/ 5/性别/剂量 Wistar大鼠(年龄:8周,体重:雄性185.9-199.4克,雌性162.6-176.8克)单次口服给予了pinoxaden技术(丙酸:97.2%;批号:EZ005006;米色固体)或0.5% w/v羧甲基纤维素作为对照剂量,用0.1% w/v聚山梨酯80口服灌胃。研究的限量剂量为5,000 mg/kg或0 mg/kg(对照)。在给药前记录了每个动物体重,并在第7天和第14天再次记录。在初始研究日给药后多次观察毒性临床表现,并在随后的14天内每天观察。所有动物在第14天或死亡后立即进行尸检。...所有对照动物在研究期间存活,体重增加,外观健康。尸检时没有观察到明显的内部发现。对于剂量为5,000 mg/kg的动物,观察到的毒性临床表现包括轻微软便和弓背姿势,但动物在研究的第1天就恢复了这些症状。一只雄性动物在给药后第5天被发现死亡。这只动物的尸检显示小红色的小肠和大肠以及红褐色的盲肠。在研究期间存活的动物体重都有所增加,尸检时没有明显的内部发现。
/LABORATORY ANIMALS: Acute Exposure/ 5/sex/dose Wistar rats (Age: 8 weeks, Weight: 185.9-199.4 g males, 162.6-176.8 g females) were given a single oral dose of pinoxaden technical(Propanoic acid: 97.2%; Batch #: EZ005006; beige solid) or a control dose of 0.5% w/v carboxymethylcellulose in 0.1% w/v polysorbate 80 by oral gavage. The study was performed at a limit dose of either 5,000 mg/kg or 0 mg/kg (control). Individual animal body-weights were recorded prior to dosing, and again on days 7 and 14. Clinical signs of toxicity were made several times post-dosing on the initial study day and daily thereafter for 14 days. All animals were necropsied on study day 14 or immediately after death. ... All control animals survived, gained weight and appeared healthy during the study. No gross internal findings were observed at necropsy. For those animals dosed at 5,000 mg/kg clinical signs of toxicity noted included slight soft feces and hunched posture, but animals recovered from these symptoms by day 1 of the study. One male was found dead on day 5 post-dosing. Gross necropsy of this animal revealed reddish small and large intestines and a reddish caecum. The surviving animals all gained weight during the study and had no gross internal findings at necropsy.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在一项兔子代谢研究中,给雌性Chbb-HM兔子通过灌胃的方式单次口服给予了(苯基-1-(14)C)NOA 407855(/pinoxaden/ 批号ILA-8.1B-5和ILA-8.1C-1B;放射性纯度98.9%)的水溶液,其中含有0.5%羧甲基纤维素和0.1%Tween 80,剂量为0.5和300 mg/kg。在给药后长达168小时内收集尿液、粪便和血液样本。通过HPLC、TLC和LC/MS对尿液和粪便中的代谢物进行定量和鉴定。动物在168小时后牺牲,收集组织以确定残留放射性。无论剂量水平如何,(14)C NOA 407855的吸收和消除都是快速且基本完全的。在低剂量时,血液中的最高浓度(Cmax)在0.5小时内达到,在高剂量时在大约2小时内达到。血液中放射性的半衰期分别为低剂量组3小时和高剂量组12小时,且在48小时(低剂量组)和96小时(高剂量组)时血液中的放射性已无法检测。在给药后168小时,放射性剂量的总回收率平均为94.7-100.1%。排泄途径基本上与剂量无关,尽管与低剂量相比,高剂量的排泄略有延迟。在大约24小时(低剂量)或48小时(高剂量)内,大约90%的剂量通过尿液排出。在48小时内,额外4-7%的剂量通过粪便排出。对于两个剂量组,168小时后组织中残留的放射性浓度可以忽略不计,占剂量的小于或等于0.1%。在胆囊和胃肠道(GI)中检测到可量化残留物,低剂量组为0.0020-0.0025 ppm Eq,高剂量组为1.66-1.69 ppm Eq,在高剂量组的肾脏、肝脏、血浆和血液中为0.017-0.158 ppm。然而,其余组织中的放射性低于定量限(LOQ)。尿液和粪便中排出的几乎所有代谢物都已被鉴定(92.8-97.7%剂量),且代谢物轮廓与剂量水平无关。对于两个剂量组,代谢物M2(NOA 407854)被鉴定为尿液(88.6-91.0%剂量)和粪便(3.6-6.2%剂量)中的主要成分。尿液和/或粪便中也鉴定出少量代谢物M4(0.4-0.6%剂量)、K4(0.2%剂量)、M12(0.2%剂量)和K3(0.1%剂量)。未鉴定的代谢物占剂量小于或等于0.6%。在兔子中,NOA 407885的代谢主要通过酯键的水解形成代谢物M2(NOA 407854),这是尿液和粪便中的主要代谢物(92-97%剂量)。次要的次级反应包括:在苯基上的4-甲基组进行羟基化产生M4(在尿液和粪便中排出);或M2的葡萄糖苷酸化形成代谢物M12。兔子中的代谢途径与大鼠基本相同。
In a ... rabbit metabolism study, a single oral dose of (Phenyl-1-(14)C) NOA 407855 (/pinoxaden/ Batch/lot # ILA-8.1B-5 and ILA-8.1C-1B; radiochemical purity $98.9%) was administered in aqueous 0.5% carboxymethylcellulose and 0.1% Tween 80 to female Chbb-HM rabbits (3/dose) via gavage at nominal dose levels of 0.5 and 300 mg/kg. Urine, feces, and blood samples were collected up to 168 hours after dosing. Metabolites in urine and feces were quantified and identified by HPLC, TLC, and LC/MS. Animals were sacrificed after 168 hours, and tissues were collected to determine of residual radioactivity. Absorption and elimination of (14)C NOA 407855 were rapid and essentially complete regardless of dose level. Maximum concentrations (Cmax) in blood were attained within 0.5 hours at the low dose and within approximately 2 hours at the high dose. Half lives for radioactivity in the blood were 3 and 12 hours for the low and high dose groups, and radioactivity in blood was non-detectable by 48 and 96 hours for the low and high dose groups. The total recovery of the radioactive dose averaged 94.7-100.1% at 168 hours post-dose. The route of excretion was essentially independent of dose, although excretion was slightly retarded at the high dose compared to the low dose. Approximately 90% of the dose was excreted in the urine within 24 (low dose) or 48 (high dose) hours. An additional 4-7% dose was excreted in the feces within 48 hours. For both dose groups, concentrations of radioactivity remaining in the tissues were negligible by 168 hours post-dose and accounted for less than or equal to 0.1% of the dose. Quantifiable residues were detect in gall bladder and gastrointestinal (GI) tract for both the low dose group (0.0020-0.0025 ppm Eq) and high dose group (1.66-1.69 ppm Eq), and in the kidneys, liver, plasma, and blood (0.017-0.158 ppm) of the high dose group. However, radioactivity in the remaining tissues was below the limit of quantitation (LOQ). Essentially all of the metabolites excreted in the urine and feces were identified (92.8-97.7% dose), and the metabolite profile was the same regardless of dose level. For both dose groups, Metabolite M2 (NOA 407854) was identified as the major component in both urine (88.6-91.0% dose) and feces (3.6-6.2% dose). Minor amounts of Metabolites M4 (0.4-0.6% dose), K4 (0.2% dose), M12 (0.2% dose) and K3 (0.1% dose) were also identified in urine and/or feces. Unidentified metabolites accounted for less than or equal to 0.6% dose. In rabbits, the metabolism of NOA 407885 proceeds predominantly by hydrolysis of the ester linkage to form Metabolite M2 (NOA 407854), which is the major metabolite in urine and feces (92-97% dose). Minor secondary reactions include either: hydroxylation at the 4-methyl group of the phenyl moiety to yield M4 (excreted in urine and feces); or glucuronidation of M2 to form metabolite M12. The metabolic pathway in the rabbit is essentially identical to the rat.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
根据大鼠体内/体外皮肤渗透研究结果,使用EC 100配方的皮肤吸收估计为40%。在这种研究中,使用EC配方的,大鼠皮肤上涂抹的剂量的36%在接下来的24小时内被吸收。在体外研究中,从切除的大鼠皮肤吸收EC配方的量为65.5%。在体外研究中,无论剂量载体的种类和剂量水平如何,从切除的人体皮肤吸收放射性物质的量都极小,占涂抹剂量的0.36-1.84%。因此,在体外研究中,大鼠皮肤的吸收显著高于人体皮肤。此外,在大鼠体内研究中,测试物质的吸收与大鼠皮肤的体外研究相当。因此,数据表明,人体内的吸收将显著低于大鼠。
Dermal absorption is estimated to be 40% based on the results of the in vivo/in vitro dermal penetration study in rats using the EC 100 formulation. (The emulsifiable concentrate (EC) formulation will be used in the field and is believed to be much more absorbable than technical pinoxaden without the emulsifiers.) In this study with the EC formulation, 36% of the dose applied to the skin of rats in an in vivo study was absorbed over the following day (24 hours post-exposure). Absorption of the EC formulation from excised rat skin in an in vitro study was 65.5% of the applied dose after 24 hours post-exposure. For excised human skin, absorption of radioactivity was minimal regardless of the dosing vehicle and dose level in an in vitro study. Absorption accounted 0.36-1.84% of the applied dose after a 24-hour exposure at doses from 5-400 :g/cm2. Thus, in the in vitro studies, absorption was considerably higher in rat skin than in human skin. Additionally, absorption of the test substance in the in vivo rat study was comparable to the absorption in the in vitro study with rat skin. Therefore, the data suggest that in vivo absorption in humans would be considerably lower than in the rat.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在小白鼠新陈代谢研究中,给C57BL/10Jf/CD-1雄性和雌性小鼠的四个组别按照以下方式施用了(pyrazol-3,5-(14)C)NOA 407855(/pinoxaden/,大于或等于97.6%的放射性纯度;批号ILA-76.3B ILA-76.3C):(一)G1组通过灌胃给予单次或每日重复剂量的1.4 mg/kg体重;(二)G2组通过灌胃给予单次或每日重复剂量的140 mg/kg体重;(三)G3组通过饲料给予10 ppm;(四)G4组通过饲料给予1000 ppm。每个组别的最大给药持续时间为18天。收集终末血液样本以确定全血中放射活性的浓度随时间的变化,并在给药后不同时间收集24小时的尿液和粪便。该研究的既定目标是:(一)调查达到稳态动力学所需的给药持续时间;(二)比较灌胃或饮食给药后的系统暴露并确定任何显著的性别差异;(三)比较单次和多次给药后雄性和雌性小鼠血液和排泄物代谢物轮廓;(四)确定在饮食研究中应分析哪种代谢物。在给药后不同时间间隔采集的全血样本中的放射性水平表明,灌胃剂量被迅速吸收(Tmax = 0.5小时)并消除,无论剂量水平或给药持续时间如何。对于饮食给药组,吸收较慢(Tmax = 8-12小时),但从处理过的饲料中撤出后,血液中的消除是迅速的。在1、7、14和18天饮食给药后Tmax时的血液浓度表明,在18天内达到了血液水平的稳态。尽管尿液排泄通常高于粪便排泄,但基于性别、给药组或给药持续时间,在尿液和粪便之间排泄的放射性没有明确的模式。尿液中的放射性(包括笼子清洗)占排泄放射性活性的26-83%,粪便中占17-74%。将NOA 407855口服给药给小鼠,无论是通过灌胃还是饮食,血液、尿液和粪便中的代谢物轮廓在定性和定量上都与性别、剂量水平、给药方法(灌胃与饮食)、给药持续时间(单次与多次剂量)和收集时间无关,尽管在粪便中观察到了一些定量变化。在血液、尿液或粪便中没有检测到母体化合物。代谢物M2(NOA 407854)是所有三种基质中识别的主要成分,占可提取血液放射活性的约67-93%,尿液总放射活性的69-89%,和粪便中可提取放射活性的35-75%。血液中也检测到大量的代谢物M4(占可提取血液放射活性的2-11%),尿液(总放射活性的5-14%)和粪便(可提取放射活性的12-41%)。在每个基质中检测到的其余成分都是少量的(小于样本放射活性的8%),包括血液提取物中的五个成分,尿液中的八个成分,以及粪便提取物中的8-11个成分。通过LC/MS和LC/NMR分析从复合样本中分离出的馏分,确认了尿液和粪便中代谢物M2和M4的存在。这些分析还鉴定了尿液中小量的代谢物M13、M21、M50和M51,以及粪便提取物中的代谢物M13、M19、M20、M22、M49和M50。基于在血液、尿液和粪便中识别的代谢物及其相对丰度,NOA 407855在小鼠中的代谢主要涉及水解酯部分形成代谢物M2,这是在尿液和粪便中排泄的主要成分。在较小程度上,代谢物M2也可能经历一系列次级反应,产生多种次要代谢物。这些次级反应包括:羟基化、氧化、水解、脱烷基、环形成,以及氧化二氮杂环中的醚键断裂。
In a ... mouse metabolism study, (pyrazol-3,5-(14)C) NOA 407855 (/pinoxaden/ greater than or equal to 97.6% radiochemical purity; Lots ILA-76.3B ILA-76.3C) was administered to 4 groups of male and female C57BL/10Jf/CD-1 mice as follows: (I) Group G1 was given either a single-dose or repeated daily dose of 1.4 mg/kg body-weight by gavage; (ii) Group G2 was administered either a single-dose or repeated daily dose of 140 mg/kg body-weight by gavage; (iii) Group G3 was fed at 10 ppm in the diet; and (iv) Group G4 was fed a 1000 ppm diet. The maximum duration of dosing in each group was for 18 days. Terminal blood samples were collected to determine a time course of the concentration of radioactivity in whole blood, and urine and feces were collected over 24 hours after varying time periods of dosing. The stated objectives of this study were to: (I) investigate the duration of dosing required to reach steady-state kinetics; (ii) compare systemic exposure following gavage or dietary dosing and determine any marked sex difference; (iii) compare blood and excreta metabolite profiles after single and multiple dosing to male and female mice; and (iv) resolve which metabolite should be analyzed during dietary studies. Radioactivity levels in whole blood sampled at various post-dose intervals indicated that the gavage dose was rapidly absorbed (Tmax = 0.5 hours) and eliminated regardless of the dose level or the duration of dosing. Absorption was slower for the dietary dosing groups (Tmax = 8-12 hours), but elimination from the blood was rapid once mice were withdrawn from the treated diet. Concentrations in blood at Tmax following 1, 7, 14, and 18 days of dietary dosing indicated that a steady state in blood levels was achieved within 18 days. Although urinary excretion was typically higher than fecal excretion, there was no clear pattern in the distribution of excreted radioactivity between urine and feces based on sex, dosing group, or duration of dosing. Radioactivity in urine (including cage wash) varied from 26-83% of the excreted radioactivity and in feces from 17-74%. Following oral administration of NOA 407855 to mice either by gavage or in the diet, the metabolite profiles in blood, urine and feces were qualitatively and quantitatively independent of sex, dose level, dosing method (gavage vs. dietary), dosing duration (single vs. multiple doses) and time of collection, although some quantitative variations were observed in feces. Parent compound was not detected in blood, urine or feces. Metabolite M2 (NOA 407854) was the major component identified in all three matrices, accounting for approximately 67-93% of the extractable blood radioactivity, 69-89% of the total radioactivity in urine, and 35-75% of the radioactivity extractable from feces. Substantial amounts of Metabolite M4 were also detected in blood (2-11% extractable blood radioactivity), urine (5-14% of total radioactivity), and feces (12-41% of the extractable radioactivity). The remaining components detected in each matrix were minor (<8% of the sample radioactivity) and included five components in blood extracts, eight components in urine, and 8-11 components in fecal extracts. The presence of Metabolites M2 and M4 in urine and feces were confirmed by LC/MS and LC/NMR analyses of fractions isolated from composited samples. These analyses also identified minor amounts (<3% sample radioactivity) of Metabolites M13, M21, M50, and M51 in urine and Metabolites M13, M19, M20, M22, M49, and M50 in fecal extracts. Based on the metabolites identified in blood, urine and feces and their relative abundance, the metabolism of NOA 407855 in mice primarily involves hydrolysis of the ester moiety to form Metabolite M2, which is the primary component excreted in urine and feces. To a minor extent, Metabolite M2 may also undergo a number of secondary reactions to produce variety of minor metabolites. These secondary reactions include: hydroxylation, oxidation, hydrolysis, dealkylation, ring formation, and cleavage of the ether bond in the oxadiazepine moiety.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在一项体内皮肤渗透研究中,将(吡唑-3,5-(14)C)NOA407855(/pinoxaden/ >95% 放射化学纯度,批号/EZ005006)悬浮于可乳化浓缩(EC)配方中,并以其原液或以其水稀释液施用于近似于未稀释商业配方和田间使用的稀释水喷雾的暴露。将配方的测试物质施用于4只雄性Alpk:APfSD(Wistar衍生物种)大鼠/时间点/剂量的剃毛完整皮肤(10平方厘米)上,剂量水平为5和25微克/平方厘米的水稀释液(1/200和1/40)以及400微克/平方厘米的原液EC配方,暴露期为4或10小时。在暴露期结束时,清洗每只大鼠的皮肤,并处死4只大鼠/时间点/剂量以检查皮肤吸收情况。另外4只大鼠/剂量在清洗皮肤后暴露10小时,然后保留24小时以确定暴露后的进一步吸收。此外,使用离体大鼠皮肤和人体皮肤在静态扩散细胞装置中进行的体外研究,比较了皮肤吸收情况。体外研究中的给药方案与体内研究相同,除了对人体皮肤使用原液EC配方时额外采用了1000微克/平方厘米的剂量水平。检查离体皮肤样本在10小时和24小时暴露期后的吸收情况,除了1000微克/平方厘米的剂量水平仅使用10小时的暴露期。对于体内大鼠研究,所有剂量组的总回收率在84-96%之间。对于原液EC配方(400微克/平方厘米),4小时后吸收了17%的剂量,10小时后吸收了30%的剂量,在接下来的24小时内增加到36%的剂量。无论暴露时间如何,7%的剂量仍可留在皮肤上或皮肤内待吸收,其中1.3-1.4%的剂量在角质层中。在暴露后24小时,潜在可吸收剂量下降到5.3%的剂量,其中1.4%的剂量在角质层中。大部分吸收的放射性物质通过尿液(包括笼子清洗)排出,约占给药剂量的30%(吸收剂量的83%),3.3%的剂量在粪便中排出(吸收剂量的9%)。在24小时内,几乎完全排泄,只有1.5%的剂量在胃肠道和尸体中回收。对于1/40水喷雾稀释液(25微克/平方厘米),吸收明显低于EC配方,4小时和10小时后分别吸收了0.7%和1.6%的剂量。在10小时暴露和清洗后,吸收量增加到24小时后达到3.8%的剂量。在清洗后,皮肤上或皮肤内潜在可吸收的放射性物质占所有采样间隔的2.6-3.1%的剂量,主要与角质层相关(2.0-2.3%的剂量)。与高剂量组一样,大部分吸收的放射性物质在24小时内通过尿液(吸收剂量的66%)和粪便(吸收剂量的11%)排出。对于使用离体大鼠和人体皮肤的体外研究,所有剂量组在两个暴露间隔的总回收率在94-104%之间。与体内研究一样,离体大鼠皮肤对原液EC配方(400微克/平方厘米)的吸收高于1/200或1/40水稀释液(分别为5和25微克/平方厘米)。在10小时暴露后,从EC配方中吸收了40.3%的剂量,而从水稀释液中吸收了34.1%和25.0%的剂量(分别为5和25微克/平方厘米)。在24小时暴露后,吸收率上升到65.5%的剂量对于EC配方和49.0和44.7%的剂量对于水稀释液。无论暴露时间如何,皮肤上潜在可吸收的放射性物质占原液EC配方的8.8-11.8%剂量,1/40水稀释液的12.1-12.9%剂量,以及1/200水稀释液的18.5-20.6%剂量。对于离体人体皮肤,无论给药载体和剂量水平如何,吸收的放射性物质都很少。在10小时暴露后,从5-1000微克/平方厘米的剂量中吸收了0.34-1.55%的剂量,在24小时暴露后,从5-400微克/平方厘米的剂量中吸收了0.36-1.84%的剂量。在大于或等于25微克/平方厘米的剂量组中,皮肤上(角质层和表皮)潜在可吸收的放射性物质占2.42-3.61%的剂量,在5微克/平方厘米的剂量组中占8.49-8.80%的剂量。
In an in vivo dermal penetration study, (pyrazole-3, 5-(14)C) NOA407855 (/pinoxaden/ >95% radiochemical purity, lot/batch #EZ005006) was suspended in an emulsifiable concentrate (EC) formulation and applied neat or as aqueous dilutions to approximate exposure to the undiluted commercial formulation and to the dilute aqueous spray used in the field. The formulated test substance was administered to the shaved intact skin (10 sq cm) of 4 male Alpk:APfSD (Wistar-derived) rats/time point/dose at dose levels of 5 and 25 ug/sq cm for the aqueous dilutions (1/200 and 1/40) and 400 ug/cm2 for the neat EC formulation for a 4- or 10-hour exposure period. At the end of the exposure period, the skin of each rat was washed, and 4 rats/time point/dose were sacrificed for examination of dermal-absorption. A further 4 rats/dose were exposed for 10 hours and then retained for 24 hours after the skin was washed to determine further post-exposure absorption. In addition, in vitro studies were conducted using excised rat skin and human skin mounted in a static diffusion cell apparatus to compare dermal-absorption. The dosing regimen used in the in vitro studies was the same as in the in vivo study, except that an additional dose level of 1000 ug/sq cm was employed for human skin using the neat EC formulation. Absorption from excised skin samples was examined after 10- and 24-hour exposure durations, except at the 1000 ug/sq cm dose level which used only a 10-hour exposure. For the in vivo rat study, total recovery of the applied dose ranged from 84-96% for all dose groups. For the neat EC formulation (400 ug/sq cm), 17% of the dose was absorbed after 4 hours and 30% dose after 10 hours, increasing to 36% dose over the following day (24 hours post-exposure). Regardless of exposure duration, 7% dose remained available in or on the skin for potential absorption, with 1.3-1.4% of the dose in the stratum corneum. At 24 hours post-exposure, the potentially absorbable dose declined to 5.3% dose, with 1.4% of the dose in the stratum corneum. Most of the absorbed radioactivity was excreted in the urine (including cage wash), accounting for approximately 30% of the applied dose (83% of the absorbed dose), and 3.3% dose was eliminated in the feces (9% of the absorbed dose). Excretion was virtually complete within 24 hours, with only 1.5% of the dose being recovered in the GI tract and carcass. For the 1/40 aqueous spray dilution (25 ug/sq cm), absorption was markedly lower than for the EC formulation, with only 0.7 and 1.6% of the dose being absorbed by 4 and 10 hours, respectively. After a 10-hour exposure and washing, there was an increase in absorption up to 3.8% dose by 24 hours post-dose. Potentially absorbable radioactivity in or on the skin following washing accounted for 2.6-3.1% of the dose at all sampling intervals and was primarily associated with the stratum corneum (2.0-2.3% dose). As with the high-dose group, most of the absorbed radioactivity was excreted within 24 hours in the urine (66% of absorbed dose) and feces (11% of absorbed dose). For the in vitro studies using excised rat and human skin, total recovery of the applied dose ranged from 94-104% for all dose groups at both exposure intervals. As in the in vivo study, absorption from excised rat skin was higher for the neat EC formulation (400 ug/sq cm) than for either of the 1/200 or 1/40 aqueous dilutions (5 and 25 ug/sq cm, respectively). Following a 10-hour exposure, 40.3% of the applied dose from the EC formulation was absorbed compared to 34.1 and 25.0% of the applied dose from aqueous dilutions (5 and 25 ug/sq cm). After 24 hours of exposure, absorption rose to 65.5% dose for the EC formulation and 49.0 and 44.7% dose for the aqueous dilutions. Regardless of exposure duration, potentially absorbable radioactivity remaining on the skin accounted for 8.8-11.8% dose for the neat EC formulation, 12.1-12.9% dose for the 1/40 aqueous dilution, and 18.5-20.6% dose for the 1/200 aqueous dilution. For excised human skin, absorption of radioactivity was minimal regardless of the dosing vehicle and dose level. Absorption accounted for 0.34-1.55% of the applied dose after a 10-hour exposure at doses from 5-1000 ug/sq cm and 0.36-1.84% of the applied dose after a 24-hour exposure at doses from 5-400 ug/sq cm. Potentially absorbable radioactivity remaining in or on the skin (stratum corneum and epidermis) accounted for 2.42-3.61% dose in the greater than or equal to 25 ug/sq cm dose groups and 8.49-8.80% dose in the 5 ug/sq cm dose group. Thus, in the in vitro studies, absorption was considerably higher in rat skin than in human skin. Additionally, absorption of the test substance in the in vivo rat study was comparable to the absorption in the in vitro study with rat skin. Therefore, the data may suggest that in vivo absorption in humans would be considerably lower than in the rat.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险品标志:
    F,Xi
  • WGK Germany:
    3
  • 储存条件:
    室温

SDS

SDS:e1796cb475bf9416c067d2cae02ea625
查看
1.1 产品标识符
: 唑啉草酯
产品名称
1.2 鉴别的其他方法
8-(2,6-diethyl-p-tolyl)-1,2,4,5-tetrahydro-7-oxo-7H-pyrazolo(1,2-d)(1,4,5)oxadiazepin-9-yl 2,2-
dimethylpropionate
1.3 有关的确定了的物质或混合物的用途和建议不适合的用途
仅供科研用途,不作为药物、家庭备用药或其它用途。

模块 2. 危险性概述
2.1 GHS分类
急性毒性, 经口 (类别5)
急性毒性, 吸入 (类别4)
眼刺激 (类别2A)
特异性靶器官系统毒性(一次接触) (类别3)
急性水生毒性 (类别3)
2.2 GHS 标记要素,包括预防性的陈述
象形图
警示词 警告
危险申明
H303 吞咽可能有害。
H319 造成严重眼刺激。
H332 吸入有害。
H335 可能引起呼吸道刺激。
H402 对水生生物有害。
警告申明
预防
P261 避免吸入粉尘/烟/气体/烟雾/蒸气/喷雾.
P264 操作后彻底清洁皮肤。
P271 只能在室外或通风良好之处使用。
P273 避免释放到环境中。
P280 穿戴防护手套/ 眼保护罩/ 面部保护罩。
措施
P304 + P340 如吸入,将患者移至新鲜空气处并保持呼吸顺畅的姿势休息.
P305 + P351 + P338 如与眼睛接触,用水缓慢温和地冲洗几分钟。如戴隐形眼镜并可方便地取
出,取出隐形眼镜,然后继续冲洗.
P312 如感觉不适,呼救中毒控制中心或医生.
P337 + P313 如仍觉眼睛刺激:求医/就诊。 如仍觉眼睛刺激:求医/就诊.
储存
P403 + P233 存放于通风良的地方。 保持容器密闭。
P405 存放处须加锁。
处理
P501 将内容物/ 容器处理到得到批准的废物处理厂。
2.3 其它危害物 - 无

模块 3. 成分/组成信息
3.1 物 质
: 8-(2,6-diethyl-p-tolyl)-1,2,4,5-tetrahydro-7-oxo-7H-pyrazolo(1,2-
别名
d)(1,4,5)oxadiazepin-9-yl 2,2-dimethylpropionate
: C23H32N2O4
分子式
: 400.51 g/mol
分子量
组分 浓度或浓度范围
PINOXADEN
-
CAS 号 243973-20-8

模块 4. 急救措施
4.1 必要的急救措施描述
一般的建议
请教医生。 出示此安全技术说明书给到现场的医生看。
吸入
如果吸入,请将患者移到新鲜空气处。 如果停止了呼吸,给于人工呼吸。 请教医生。
皮肤接触
用肥皂和大量的水冲洗。 请教医生。
眼睛接触
用大量水彻底冲洗至少15分钟并请教医生。
食入
切勿给失去知觉者从嘴里喂食任何东西。 用水漱口。 请教医生。
4.2 主要症状和影响,急性和迟发效应
据我们所知,此化学,物理和毒性性质尚未经完整的研究。
4.3 及时的医疗处理和所需的特殊处理的说明和指示
无数据资料

模块 5. 消防措施
5.1 灭火介质
灭火方法及灭火剂
用水雾,耐醇泡沫,干粉或二氧化碳灭火。
5.2 源于此物质或混合物的特别的危害
碳氧化物, 氮氧化物
碳氧化物, 氮氧化物
5.3 给消防员的建议
如必要的话,戴自给式呼吸器去救火。
5.4 进一步信息
无数据资料

模块 6. 泄露应急处理
6.1 人员的预防,防护设备和紧急处理程序
使用个人防护设备。 防止粉尘的生成。 防止吸入蒸汽、气雾或气体。 保证充分的通风。
将人员撤离到安全区域。 避免吸入粉尘。
6.2 环境保护措施
在确保安全的前提下,采取措施防止进一步的泄漏或溢出。 不要让产物进入下水道。
防止排放到周围环境中。
6.3 抑制和清除溢出物的方法和材料
收集、处理泄漏物,不要产生灰尘。 扫掉和铲掉。 存放进适当的闭口容器中待处理。
6.4 参考其他部分
丢弃处理请参阅第13节。

模块 7. 操作处置与储存
7.1 安全操作的注意事项
避免接触皮肤和眼睛。 防止粉尘和气溶胶生成。
在有粉尘生成的地方,提供合适的排风设备。一般性的防火保护措施。
7.2 安全储存的条件,包括任何不兼容性
贮存在阴凉处。 容器保持紧闭,储存在干燥通风处。
对湿度敏感
7.3 特定用途
无数据资料

模块 8. 接触控制和个体防护
8.1 容许浓度
最高容许浓度
没有已知的国家规定的暴露极限。
8.2 暴露控制
适当的技术控制
按照良好工业和安全规范操作。 休息前和工作结束时洗手。
个体防护设备
眼/面保护
带有防护边罩的安全眼镜符合 EN166要求请使用经官方标准如NIOSH (美国) 或 EN 166(欧盟)
检测与批准的设备防护眼部。
皮肤保护
戴手套取 手套在使用前必须受检查。
请使用合适的方法脱除手套(不要接触手套外部表面),避免任何皮肤部位接触此产品.
使用后请将被污染过的手套根据相关法律法规和有效的实验室规章程序谨慎处理. 请清洗并吹干双手
所选择的保护手套必须符合EU的89/686/EEC规定和从它衍生出来的EN 376标准。
身体保护
全套防化学试剂工作服, 防护设备的类型必须根据特定工作场所中的危险物的浓度和含量来选择。
呼吸系统防护
如须暴露于有害环境中,请使用P95型(美国)或P1型(欧盟 英国
143)防微粒呼吸器。如需更高级别防护,请使用OV/AG/P99型(美国)或ABEK-P2型 (欧盟 英国 143)
防毒罐。
呼吸器使用经过测试并通过政府标准如NIOSH(US)或CEN(EU)的呼吸器和零件。

模块 9. 理化特性
9.1 基本的理化特性的信息
a) 外观与性状
形状: 粉末
颜色: 白色, 棕灰色
b) 气味
甜味
c) 气味阈值
无数据资料
d) pH值
无数据资料
e) 熔点/凝固点
120 - 122 °C
f) 起始沸点和沸程
无数据资料
g) 闪点
无数据资料
h) 蒸发速率
无数据资料
i) 易燃性(固体,气体)
无数据资料
j) 高的/低的燃烧性或爆炸性限度 无数据资料
k) 蒸汽压
0.2 hPa 在 20 °C
0.46 hPa 在 25 °C
l) 蒸汽密度
无数据资料
m) 相对密度
1.16 g/cm3 在 24 °C
n) 水溶性
0.2 g/l 在 25 °C
o) n-辛醇/水分配系数
辛醇--水的分配系数的对数值: 3.2 在 25 °C
p) 自燃温度
无数据资料
q) 分解温度
无数据资料
r) 粘度
无数据资料

模块 10. 稳定性和反应活性
10.1 反应性
无数据资料
10.2 稳定性
无数据资料
10.3 危险反应的可能性
无数据资料
10.4 应避免的条件
无数据资料
10.5 不兼容的材料
强氧化剂
10.6 危险的分解产物
其它分解产物 - 无数据资料

模块 11. 毒理学资料
11.1 毒理学影响的信息
急性毒性
半数致死剂量 (LD50) 经口 - 大鼠 - 3,129 mg/kg
半数致死浓度(LC50) 吸入 - 大鼠 - 雄性 - 4 h - 4.63 mg/l
半数致死浓度(LC50) 吸入 - 大鼠 - 雌性 - 4 h - 6.24 mg/l
半数致死剂量 (LD50) 经皮 - 大鼠 - > 2,000 mg/kg
皮肤刺激或腐蚀
无数据资料
眼睛刺激或腐蚀
无数据资料
呼吸道或皮肤过敏
豚鼠 - 未引起试验动物过敏。
生殖细胞突变性
无数据资料
致癌性
动物试验中未见致癌,诱变或畸变影响。
IARC:
此产品中没有大于或等于 0。1%含量的组分被 IARC鉴别为可能的或肯定的人类致癌物。
生殖毒性
发育毒性 - 大鼠 - 雌性 - 经口
对新生儿的影响:其他新生儿检测或影响。
发育毒性 - 大鼠 - 雌性 - 经口
特定发育异常:肌肉骨骼系统。
发育毒性 - 兔子 - 经口
对胚胎或胎儿的影响:其他对胚胎的影响。
特异性靶器官系统毒性(一次接触)
吸入 - 可能引起呼吸道刺激。
特异性靶器官系统毒性(反复接触)
无数据资料
吸入危险
无数据资料
潜在的健康影响
吸入 吸入有害。 引起呼吸道刺激。
摄入 如服入是有害的。
皮肤 如果通过皮肤吸收可能是有害的。 可能引起皮肤刺激。
眼睛 造成严重眼刺激。
接触后的征兆和症状
据我们所知,此化学,物理和毒性性质尚未经完整的研究。
附加说明
化学物质毒性作用登记: UA2459430

模块 12. 生态学资料
12.1 生态毒性
对鱼类的毒性 半数致死浓度(LC50) - Oncorhynchus mykiss (红鳟) - 10.3 mg/l - 96.0 h
对水蚤和其他水生无脊 半致死有效浓度(EC50) - Daphnia magna (大型蚤) - 52 mg/l - 48 h
椎动物的毒性
对藻类的毒性 ErC50 - Pseudokirchneriella subcapitata (绿藻) - 41 mg/l - 72 h
12.2 持久存留性和降解性
无数据资料
12.3 潜在的生物蓄积性
此物质既不是非常持久性的,也不是非常生物累积性的(vPvB).
12.4 土壤中的迁移性
无数据资料
12.5 PBT 和 vPvB的结果评价
无数据资料
12.6 其它不利的影响
对水生生物有害。

模块 13. 废弃处置
13.1 废物处理方法
产品
将剩余的和未回收的溶液交给处理公司。 联系专业的拥有废弃物处理执照的机构来处理此物质。
与易燃溶剂相溶或者相混合,在备有燃烧后处理和洗刷作用的化学焚化炉中燃烧
受污染的容器和包装
作为未用过的产品弃置。

模块 14. 运输信息
14.1 联合国危险货物编号
欧洲陆运危规: - 国际海运危规: - 国际空运危规: -
14.2 联合国(UN)规定的名称
欧洲陆运危规: 非危险货物
国际海运危规: 非危险货物
国际空运危规: 非危险货物
14.3 运输危险类别
欧洲陆运危规: - 国际海运危规: - 国际空运危规: -
14.4 包裹组
欧洲陆运危规: - 国际海运危规: - 国际空运危规: -
14.5 环境危险
欧洲陆运危规: 否 国际海运危规 海运污染物: 否 国际空运危规: 否
14.6 对使用者的特别提醒
无数据资料


模块 15 - 法规信息
N/A


模块16 - 其他信息
N/A

制备方法与用途

唑啉草酯概述

唑啉草酯是一种具有选择性、内吸传导性的芽后型禾本科杂草除草剂。它能有效防除小麦及大麦田中的一年生禾本科杂草,非常适用于春季谷物种植。对野燕麦、黑麦草、狗尾草、硬草、茼草、日本看麦娘和棒头草等禾本科杂草有良好防效,尤其对一些恶性禾本科杂草如野燕麦、黑麦草、硬草和茼草的防效接近100%。

理化性质

唑啉草酯(pinoxaden),商品名称为Axial、Axial TBC等。它是由瑞士先正达作物保护有限公司开发的新苯基吡唑咻类化合物,纯品为亮白色无味粉末。其熔点在120.5~121.6℃之间。蒸气压低:在20℃时为2×10^-4 mPa,在25℃时为4.6×10^-4 mPa。油水分配系数lgP=3.2(25℃)。相对密度1.16(21℃)。

唑啉草酯在水中溶解度为200 mg/L(25℃),在其他溶剂中的溶解度分别为:丙酮250 g/L,二氯甲烷>500 g/L,乙酸乙酯130 g/L,正己烷1.0 g/L,甲醇260 g/L,辛醇140 g/L,甲苯130 g/L。水解半衰期(DT50)在不同pH值下的变化为:pH 4时24.1天,pH 5时25.3天,pH 7时14.9天,pH 9时仅0.3天。

毒性

唑啉草酯对大鼠急性经口毒性LD50大于5000 mg/kg。经皮毒性LD50大于2000 mg/kg。兔子皮肤无刺激作用,但对眼睛有刺激性;豚鼠的皮肤无致敏性。雄雌大鼠吸入LC50(4小时)为5.22 mg/L。

经口暴露非致癌动物学评价值:NO-AEL (mg/(kg·d)) 300(28天,大鼠),1000(28天,大鼠),300(90天,大鼠)。ADI(BfR, EC)为0.1 mg/kg[2006];EPA建议的每日允许摄入量aRfD和cRfD均为0.30 mg/kg [2005]。

应用

用药剂量为有效成分45~75 g/亩(折算成5%乳油制剂量为900~1500 mL/hm²或60~100 mL/亩,通常加水15~30 L/亩稀释)。使用时期为大麦返青后3~5叶期、杂草生长旺盛期。应用方法为茎叶喷雾。

为了提高唑啉草酯在作物与杂草之间的选择性,制剂中加入了安全剂解草酯(cloquintocet-mexyl),用于诱导作物体内代谢活性,保护作物免受药物伤害。唑啉草酯对作物安全,耐雨水冲刷。具有一定的内吸传导性,在植物叶片吸收后迅速转移到生长点,并传递到整个植株。

在48小时内,敏感杂草停止生长;1~2周内杂草叶片开始发黄,3~4周内杂草彻底死亡。

作用机理

唑啉草酯属新苯基吡唑咻类除草剂,通过抑制乙酰辅酶A羧化酶(ACC),导致脂肪酸合成受阻,从而阻止细胞生长分裂。其破坏了细胞膜脂质结构,并最终导致杂草死亡。此外,该化合物具有内吸传导性,在被植物叶片吸收后迅速转移至整株植物并产生效果。

在大麦田中,唑啉草酯对野燕麦、狗尾草和稗草等一年生禾本科杂草表现出良好的防除效果。其活性高,起效快,并耐雨水冲刷。

反应信息

  • 作为反应物:
    描述:
    唑啉草酯 作用下, 以 四氯化碳 为溶剂, 反应 20.0h, 以0.72 g的产率得到8-(2,6-diethyl-3-bromo-4-methylphenyl)-7-oxo-1,2,4,5-tetrahydro-7H-pyrazolo[1,2-d][1,4,5]oxadiazepine-9-yl-2,2-dimethylpropanoate
    参考文献:
    名称:
    具生物活性苯基吡唑啉类化合物及其制备方 法与应用
    摘要:
    本发明公开了式(I)所示的苯基吡唑啉类化合物及其制备方法与应用。式中R、R1、R2、R3、R4具有说明书中所给定义。本发明式(I)化合物具有除草、杀虫/螨或杀菌生物活性,尤其是对杂草具有很高的活性。
    公开号:
    CN110066286B
  • 作为产物:
    描述:
    2,6-二乙基-4-甲基苯胺4-二甲氨基吡啶 、 bis-triphenylphosphine-palladium(II) chloride 、 硫酸氢溴酸三乙胺sodium t-butanolate 、 sodium nitrite 作用下, 以 1,4-二氧六环5,5-dimethyl-1,3-cyclohexadiene二氯甲烷N,N-二甲基甲酰胺 为溶剂, 反应 36.0h, 生成 唑啉草酯
    参考文献:
    名称:
    唑啉草酮公斤合成
    摘要:
    成功开发了一条优化的千克级合成路线。关键中间体2-(2,6-二乙基-4-甲基苯基)丙二酸二甲酯( 19 )以2,6-二乙基-4-甲基苯胺为原料,通过重氮化反应、Suzuki交叉偶联反应和醇解反应制备,产率为59%经过三个步骤,纯度达到 97.3%。以二甘醇为原料,经酯化、环化、脱保护、成盐三步制得1,4,5-氧二氮卓二氢溴酸盐( 11 ),收率64%。Pinoxaden 通过将19与11氨解,然后用新戊酰氯酰化,经过两步以 99.9% 的纯度获得 64% 的产率。开发了中间体和最终产品的纯化方法。
    DOI:
    10.1002/jhet.4572
点击查看最新优质反应信息

文献信息

  • [EN] ACC INHIBITORS AND USES THEREOF<br/>[FR] INHIBITEURS DE L'ACC ET UTILISATIONS ASSOCIÉES
    申请人:GILEAD APOLLO LLC
    公开号:WO2017075056A1
    公开(公告)日:2017-05-04
    The present invention provides compounds I and II useful as inhibitors of Acetyl CoA Carboxylase (ACC), compositions thereof, and methods of using the same.
    本发明提供了化合物I和II,这些化合物可用作乙酰辅酶A羧化酶(ACC)的抑制剂,以及它们的组合物和使用方法。
  • [EN] 3-[(HYDRAZONO)METHYL]-N-(TETRAZOL-5-YL)-BENZAMIDE AND 3-[(HYDRAZONO)METHYL]-N-(1,3,4-OXADIAZOL-2-YL)-BENZAMIDE DERIVATIVES AS HERBICIDES<br/>[FR] DÉRIVÉS DE 3-[(HYDRAZONO))MÉTHYL]-N-(TÉTRAZOL-5-YL)-BENZAMIDE ET DE 3-[(HYDRAZONO)MÉTHYL]-N-(1,3,4-OXADIAZOL-2-YL)-BENZAMIDE UTILISÉS EN TANT QU'HERBICIDES
    申请人:SYNGENTA CROP PROTECTION AG
    公开号:WO2021013969A1
    公开(公告)日:2021-01-28
    The present invention related to compounds of Formula (I): or an agronomically acceptable salt thereof, wherein Q, R2, R3, R4, R5 and R6 are as described herein. The invention further relates to compositions comprising said compounds, to methods of controlling weeds using said compositions, and to the use of compounds of Formula (I) as a herbicide.
    本发明涉及以下式(I)的化合物或其农业上可接受的盐,其中Q、R2、R3、R4、R5和R6如本文所述。该发明还涉及包含所述化合物的组合物,使用这些组合物控制杂草的方法,以及将式(I)的化合物用作除草剂的用途。
  • [EN] INSECTICIDAL TRIAZINONE DERIVATIVES<br/>[FR] DÉRIVÉS DE TRIAZINONE INSECTICIDES
    申请人:SYNGENTA PARTICIPATIONS AG
    公开号:WO2013079350A1
    公开(公告)日:2013-06-06
    Compounds of the formula (I) or (I'), wherein the substituents are as defined in claim 1, are useful as pesticides.
    式(I)或(I')的化合物,其中取代基如权利要求1所定义的那样,可用作杀虫剂。
  • [EN] HERBICIDALLY ACTIVE HETEROARYL-S?BSTIT?TED CYCLIC DIONES OR DERIVATIVES THEREOF<br/>[FR] DIONES CYCLIQUES SUBSTITUÉES PAR HÉTÉROARYLE À ACTIVITÉ HERBICIDE OU DÉRIVÉS DE CELLES-CI
    申请人:SYNGENTA LTD
    公开号:WO2011012862A1
    公开(公告)日:2011-02-03
    The invention relates to a compound of formula (I), which is suitable for use as a herbicide wherein G is hydrogen or an agriculturally acceptable metal, sulfonium, ammonium or latentiating group; Q is a unsubstituted or substituted C3-C8 saturated or mono-unsaturated heterocyclyl containing at least one heteroatom selected from O, N and S, or Q is heteroaryl or substituted heteroaryl; m is 1, 2 or 3; and Het is an optionally substituted monocyclic or bicyclic heteroaromatic ring; and wherein the compound is optionally an agronomically acceptable salt thereof.
    该发明涉及一种化合物,其化学式为(I),适用作为除草剂,其中G为氢或农业可接受的金属、磺酸盐、铵盐或潜伏基团;Q为未取代或取代的含有至少一个来自O、N和S的杂原子的饱和或单不饱和的C3-C8杂环烷基,或Q为杂芳基或取代的杂芳基;m为1、2或3;Het为可选择地取代的单环或双环杂芳环;且该化合物可选择地为其农学上可接受的盐。
  • TRIAZOLE ACC INHIBITORS AND USES THEREOF
    申请人:Gilead Apollo, LLC
    公开号:US20170166584A1
    公开(公告)日:2017-06-15
    The present invention provides triazole compounds useful as inhibitors of Acetyl CoA Carboxylase (ACC), compositions thereof, and methods of using the same.
    本发明提供了三唑化合物,可用作乙酰辅酶A羧化酶(ACC)的抑制剂,以及其组合物和使用方法。
查看更多

同类化合物

伊莫拉明 (5aS,6R,9S,9aR)-5a,6,7,8,9,9a-六氢-6,11,11-三甲基-2-(2,3,4,5,6-五氟苯基)-6,9-甲基-4H-[1,2,4]三唑[3,4-c][1,4]苯并恶嗪四氟硼酸酯 (5-氨基-1,3,4-噻二唑-2-基)甲醇 齐墩果-2,12-二烯[2,3-d]异恶唑-28-酸 黄曲霉毒素H1 高效液相卡套柱 非昔硝唑 非布索坦杂质Z19 非布索坦杂质T 非布索坦杂质K 非布索坦杂质E 非布索坦杂质67 非布索坦杂质65 非布索坦杂质64 非布索坦杂质61 非布索坦代谢物67M-4 非布索坦代谢物67M-2 非布索坦代谢物 67M-1 非布索坦-D9 非布索坦 非唑拉明 雷西纳德杂质H 雷西纳德 阿西司特 阿莫奈韦 阿米苯唑 阿米特罗13C2,15N2 阿瑞匹坦杂质 阿格列扎 阿扎司特 阿尔吡登 阿塔鲁伦中间体 阿培利司N-1 阿哌沙班杂质26 阿哌沙班杂质15 阿可替尼 阿作莫兰 阿佐塞米 镁(2+)(Z)-4'-羟基-3'-甲氧基肉桂酸酯 锌1,2-二甲基咪唑二氯化物 铵2-(4-氯苯基)苯并恶唑-5-丙酸盐 铬酸钠[-氯-3-[(5-二氢-3-甲基-5-氧代-1-苯基-1H-吡唑-4-基)偶氮]-2-羟基苯磺酸基][4-[(3,5-二氯-2-羟基苯 铁(2+)乙二酸酯-3-甲氧基苯胺(1:1:2) 钠5-苯基-4,5-二氢吡唑-1-羧酸酯 钠3-[2-(2-壬基-4,5-二氢-1H-咪唑-1-基)乙氧基]丙酸酯 钠3-(2H-苯并三唑-2-基)-5-仲-丁基-4-羟基苯磺酸酯 钠(2R,4aR,6R,7R,7aS)-6-(2-溴-9-氧代-6-苯基-4,9-二氢-3H-咪唑并[1,2-a]嘌呤-3-基)-7-羟基四氢-4H-呋喃并[3,2-D][1,3,2]二氧杂环己膦烷e-2-硫醇2-氧化物 野麦枯 野燕枯 醋甲唑胺