已经描述了N 1-H-1,2,3-三唑的直接开环/亲核取代反应。发散的 ( Z )-β-卤素或磺酰基取代的烯酰胺可以以可调的方式立体定向合成。这种策略不仅可以在非金属催化和温和的反应条件下实现N 1-H-1,2,3-三唑的新开环方法,而且还为可靠地获得多功能 ( Z )-β-取代的烯酰胺提供了良好的机会可用作进一步合成转化的合成前体。
Synthesis of 3-Pyrrolin-2-ones by Rhodium-Catalyzed Transannulation of 1-Sulfonyl-1,2,3-triazole with Ketene Silyl Acetal
作者:Rui-Qiao Ran、Jun He、Shi-Dong Xiu、Kai-Bing Wang、Chuan-Ying Li
DOI:10.1021/ol501514b
日期:2014.7.18
α-Imino rhodium carbenoids generated from 1-sulfonyl 1,2,3-triazole were applied to the 3 + 2 cycloaddition with ketene silyl acetal, offering a novel and straightforward synthesis of biologically interesting compound 3-pyrrolin-2-one with broad substrate scope.
Synthesis of Multifunctionalized 2-Carbonylpyrrole by Rhodium-Catalyzed Transannulation of 1-Sulfonyl-1,2,3-triazole with β-Diketone
作者:Wanli Cheng、Yanhua Tang、Ze-Feng Xu、Chuan-Ying Li
DOI:10.1021/acs.orglett.6b03179
日期:2016.12.2
A facile rhodium-catalyzed transannulation of 1-sulfonyl-1,2,3-triazoles with β-diketones was realized, and a series of multisubstituted 2-carbonylpyrroles were synthesized efficiently (up to 94% yield). The protocol features several advantages, such as readily available materials, mild reaction conditions, a concise operating procedure, a broad reaction scope, and excellent regioselectivity when benzoylacetone
of copper, rhodium, and gold formulate a one‐pot multistep pathway, which directly gives 2,5‐dihydropyrroles starting from terminal alkynes, sulfonyl azides, and propargylic alcohols. Initially, copper‐catalyzed 1,3‐dipolar cycloaddition of terminal alkynes with sulfonyl azides affords 1‐sulfonyl‐1,2,3‐triazoles, which then react with propargylic alcohols under the catalysis of rhodium. The resulting
with exclusive regioselectivity and stereoselectivity. Functional application of such a resultant product by oxidative addition and epoxidation is also explored. Notably, the treatment of a pyrroline-fused N-glycoside (3a) with TMSOTf efficiently leads to an interesting unexpected C-nucleoside (9) via a TMSOTf-inducing ring opening/acetyl migration/ringclosingreaction sequence.