Thirteen 18β-glycyrrhetinic acid (GA) derivatives were obtained by reduction at C-11 position, oxidation at C-3 position and condensation at C-2 position of GA. Anti-microbial activity evaluation indicated that compounds 04, 05, 10, 13 and 14 showed more potent inhibitory activity against Staphylococcus aureus subsp. aureus, Staphylococcus epidermidis, Staphylococcus aureus than GA, especially compound
A new series of glycyrrhetinic acidderivatives has been synthesized via the introduction of different heterocyclic rings conjugated with an α,β-unsaturated ketone in its ring A. These new compounds were screened for their antiproliferative activity in a panel of nine human cancer cell lines. Compound 10 was the most active derivative, with an IC50 of 1.1 µM on Jurkat cells, which is 96-fold more potent
Conjugates of 18β-glycyrrhetinic acid derivatives with 3-(1H-benzo[d]imidazol-2-yl)propanoic acid as Pin1 inhibitors displaying anti-prostate cancer ability
Twenty-six conjugates of 18 beta-glycyrrhetinic acid derivatives with 3-(1H-benzo[d]imidazol-2-yl)propanoic acid were designed and synthesized as Pin1 inhibitors. Most of these semi-synthetic compounds showed improved Pin1 inhibitory activity and anti-proliferative effects against prostate cancer cells as compared to 3-(1H-benzo[d] imidazol-2-yl) propanoic acid and GA. Compounds 10a and 12i were the most potent to inhibit growth of prostate cancer PC-3 with GI(50) values of 7.80 mu M and 3.52 mu M, respectively. The enzyme inhibition ratio of nine compounds at 10 mu M was over 90%. Structure-activity relationships indicated that both appropriate structure at ring C of GA and suitable length of linker between GA skeleton and benzimidazole moiety had significant impact on improving activity. Western blot assay revealed that 10a decreased the level of cell cycle regulating protein cyclin D1. Thus, these compounds might represent a novel anti-proliferative agent working through Pin1 inhibition. (C) 2017 Published by Elsevier Ltd.
Synthesis and biological activities of substituted glycyrrhetic acids
作者:John S. Baran、Donna D. Langford、Chi D. Liang、Barnett S. Pitzele