摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

甲基叔戊醚 | 994-05-8

中文名称
甲基叔戊醚
中文别名
叔戊基甲基醚;甲基叔戊基醚;叔戊基甲基醚,TAME
英文名称
tert-Amyl methyl ether
英文别名
2-methoxy-2-methylbutane
甲基叔戊醚化学式
CAS
994-05-8
化学式
C6H14O
mdl
MFCD00010186
分子量
102.177
InChiKey
HVZJRWJGKQPSFL-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 物理描述:
    GasVapor; Liquid
  • 沸点:
    86.3 °C
  • 熔点:
    -80 °C
  • 闪点:
    -7 °C (19 °F) - closed cup
  • 溶解度:
    In water, 1.07X10+4 mg/L at 20 °C
  • 密度:
    0.7660 g/cu cm at 25 °C
  • 蒸汽密度:
    Relative vapor density (air = 1): 3.6
  • 蒸汽压力:
    75.2 mm Hg at 25 °C
  • 亨利常数:
    0.00 atm-m3/mole
  • 大气OH速率常数:
    5.50e-12 cm3/molecule*sec
  • 稳定性/保质期:
    避免与不相容的材料和火源接触。
  • 自燃温度:
    415 °C
  • 分解:
    When heated to decomposition it emits acrid smoke and irritating vapors.
  • 折光率:
    Index of refraction = 1.3862 at 25 °C/D
  • 保留指数:
    672.5;674;673;669.3;666

计算性质

  • 辛醇/水分配系数(LogP):
    1.6
  • 重原子数:
    7
  • 可旋转键数:
    2
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    9.2
  • 氢给体数:
    0
  • 氢受体数:
    1

ADMET

代谢
在大鼠和一名人类志愿者吸入^(12)C-或^(13)C-标记的 tert-戊基甲基醚(TAME)后,对其生物转化进行了研究。此外,还研究了在大鼠经灌胃后的^(13)C-tert-戊醇的生物转化。尿液代谢物通过气相色谱/质谱(GC/MS)和^(13)C 核磁共振(NMR)进行鉴定。两只雄性和两只雌性大鼠分别暴露于2000 ppm的^(12)C 或^(13)C-TAME中6小时,收集48小时的尿液。通过^(13)C NMR、GC/MS 和 LC/MS/MS,根据^(13)C NMR信号的相对强度,鉴定出自由型和葡萄糖苷酸化的2-甲基-2,3-丁二醇以及tert-戊醇的葡萄糖苷酸酯作为主要的尿液代谢物。^(13)C NMR还表明存在几种次要代谢物,它们被鉴定为tert-戊醇、2-羟基-2-甲基丁酸和3-羟基-3-甲基丁酸。一名人类志愿者通过吸入2升气体采样袋中的^(13)C-TAME,初始浓度为27,000 ppm,持续4分钟,分析尿液中排出的TAME代谢物通过^(13)C NMR。在大鼠中鉴定的所有TAME代谢物也存在于人类尿液样本中。为了研究tert-戊醇的生物转化,三只雄性大鼠通过灌胃处理了250 mg/kg的^(13)C-tert-戊醇,溶解在玉米油中,并收集了48小时的尿液。尿液样本的^(13)C NMR显示了与^(13)C-TAME处理的大鼠尿液中相同的代谢物的存在。...
The biotransformation of tert-amyl methyl ether (TAME) in rats and one human volunteer after inhalation of (12)C- or (13)C-labeled TAME /was studied/. In addition, the biotransformation of [(13)C]-tert-amyl alcohol was studied in rats after gavage. Urinary metabolites were identified by GC/MS and (13)C NMR. Rats (two males and two females) were individually exposed to 2000 ppm ((12)C or (13)C-TAME for 6 hr, and urine was collected for 48 hr. Free and glucuronidated 2-methyl-2,3-butanediol and a glucuronide of tert-amyl alcohol were identified by (13)C NMR, GC/MS, and LC/MS/MS as major urinary metabolites on the basis of the relative intensities of the (13)C NMR signals. The presence of several minor metabolites was also indicated by (13)C NMR; they were identified as tert-amyl alcohol, 2-hydroxy-2-methylbutyric acid, and 3-hydroxy-3-methylbutyric acid. One human volunteer was exposed to an initial concentration of 27,000 ppm (13)C-TAME by inhalation for 4 min from a 2 L gas sampling bag, and metabolites of TAME excreted in urine were analyzed by (13)C NMR. All TAME metabolites identified in rats were also present in the human urine samples. To study tert-amyl alcohol biotransformation, male rats (n = 3) were treated with 250 mg/kg (13)C-tert-amyl alcohol dissolved in corn oil by gavage, and urine was collected for 48 hr. (13)C NMR of the urine samples showed the presence of metabolites identical to those in the urine of (13)CTAME-treated rats. ...
来源:Hazardous Substances Data Bank (HSDB)
代谢
研究了人类和 rats 吸入 4 和 40 ppm 的甲基叔丁基醚 (MTBE)、乙基叔丁基醚 (ETBE) 和叔戊基甲基醚 (TAME) 后,这些醚的生物转化情况,以及在人类饮用含 5 和 15 mg 这些醚的水后,MTBE 和 TAME 的生物转化情况。研究发现,叔丁醇(TBA)、TBA 的结合物、2-甲基-1,2-丙二醇和 2-羟基异丁酸是 MTBE 和 ETBE 的代谢产物。叔戊醇(TAA)、自由的和葡萄糖醛酸化的 2-甲基-2,3-丁二醇(TAA 的葡萄糖醛酸苷)、2-羟基-2-甲基丁酸和 3-羟基-3-甲基丁酸是 TAME 的代谢产物。吸入后,MTBE、ETBE 和 TAME 在大鼠和人类中迅速被吸收;在停止暴露后,通过呼吸和生物转化为尿中代谢物的过程,醚从血液中清除的半衰期在大鼠和人类中均小于 7 小时。吸入暴露后,MTBE 和 ETBE 在人类和大鼠中的生物转化相似。2-羟基异丁酸作为主要产物在尿液中回收。MTBE 和 ETBE 的所有代谢产物随尿液排出,其半衰期均小于 20 小时。TAME 在大鼠和人类中的生物转化在性质上是相似的,但代谢途径不同。在人类中,2-甲基-2,3-丁二醇、2-羟基-2-甲基丁酸和 3-羟基-3-甲基丁酸作为主要的尿液产物被回收。然而,在大鼠中,2-甲基-2,3-丁二醇及其葡萄糖醛酸苷是尿液中回收的主要 TAME 代谢产物。饮用 MTBE 和 TAME 后,这两种化合物从胃肠道迅速吸收。这些醚的肝脏首过代谢并未观察到,且给药剂量的显著部分被转移到血液并通过呼吸清除。MTBE 和 TAME 的代谢途径和排泄动力学在摄入和吸入暴露后是相同的。...
The biotransformation of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) was studied in humans and in rats after inhalation of 4 and 40 ppm of MTBE, ETBE, and TAME, respectively, for 4 hours, and the biotransformation of MTBE and TAME was studied after ingestion exposure in humans to 5 and 15 mg in water. tert-Butyl alcohol (TBA), a TBA conjugate, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate were found to be metabolites of MTBE and ETBE. tert-Amyl alcohol (TAA), free and glucuronidated 2-methyl-2,3-butanediol (a glucuronide of TAA), 2-hydroxy-2-methyl butyrate, and 3-hydroxy-3-methyl butyrate were found to be metabolites of TAME. After inhalation, MTBE, ETBE, and TAME were rapidly taken up by both rats and humans; after termination of exposure, clearance from blood of the ethers by exhalation and biotransformation to urinary metabolites occurred with half-times of less than 7 hours in rats and humans. Biotransformation of MTBE and ETBE was similar in humans and rats after inhalation exposure. 2-Hydroxyisobutyrate was recovered as a major product in urine. All metabolites of MTBE and ETBE excreted with urine were eliminated with half-times of less than 20 hours. Biotransformation of TAME was qualitatively similar in rats and humans, but the metabolic pathways were different. In humans, 2-methyl-2,3-butanediol, 2-hydroxy-2-methyl butyrate, and 3-hydroxy-3methyl butyrate were recovered as major urinary products. In rats, however, 2-methyl-2,3-butanediol and its glucuronide were major TAME metabolites recovered in urine. After ingestion of MTBE and TAME, both compounds were rapidly absorbed from the gastrointestinal tract. Hepatic first-pass metabolism of these ethers was not observed, and a significant part of the administered dose was transferred into blood and cleared by exhalation. Metabolic pathways for MTBE and TAME and kinetics of excretion were identical after ingestion and inhalation exposures. ...
来源:Hazardous Substances Data Bank (HSDB)
代谢
主要尿液代谢物是2-甲基-2,3-丁二醇、2-羟基-2-甲基丁酸和3-羟基-3-甲基丁酸。自由态和结合态的TAA(叔戊醇)以及叔戊基甲基醚(TAME)在尿液中只是少量代谢物。
The main urine metabolites are 2-methyl-2,3- butanediol, 2-hydroxy-2-methylbutyric acid and 3-hydroxy-3-methylbutyric acid. Free and conjugated TAA (tert-amyl alcohol) and tert-amyl methyl ether (TAME) were only minor metabolites in urine.
来源:Hazardous Substances Data Bank (HSDB)
代谢
这项研究的目的旨在调查大鼠和小鼠在吸入叔戊基甲基醚(TAME)后,TAME及其主要代谢物叔戊醇(TAA)和丙酮的血液药代动力学。在不同暴露浓度下,大鼠和小鼠TAME的血药浓度时间曲线下面积(AUC)存在显著种间差异。对于大鼠来说,随着暴露浓度的增加,血液中TAME的AUC成比例增加。而对于小鼠,在100-500 ppm的暴露浓度范围内,TAME的AUC增加与暴露浓度不成比例。在2500或500 ppm TAME暴露后,小鼠的TAA血液浓度比大鼠高(两到三倍)。随着暴露浓度的增加(100-500 ppm),小鼠的TAA AUC增加与暴露浓度不成比例。这种差异可能是由于参与TAA进一步代谢的过程(例如氧化、葡萄糖醛酸结合)达到饱和所致。对于每个物种、性别和暴露浓度,丙酮在暴露期间增加,并在暴露后16小时内恢复到对照值。
The purpose of this study was to investigate the blood pharmacokinetics of the oxygenate tertiary amyl methyl ether (TAME), its major metabolite tertiary amyl alcohol (TAA) and acetone in rats and mice following inhalation exposure to TAME. Species differences in the area under the curve (AUC) for TAME were significant at each exposure concentration. For rats, the blood TAME AUC increased in proportion with an increase in exposure concentration. For mice, an increase in exposure concentration (100-500 ppm) resulted in a disproportional increase in the TAME AUC. Mice had greater (two- to threefold) blood concentrations of TAA compared with rats following exposure to 2500 or 500 ppm TAME. Mice had a disproportional increase in the TAA AUC with an increase in exposure concentration (100-500 ppm). This difference could result from saturation of a process (e.g. oxidation, glucuronide conjugation) that is involved in the further metabolism of TAA. For each species, gender and exposure concentration, acetone increased during exposure and returned to control values by 16 h following exposure. ...
来源:Hazardous Substances Data Bank (HSDB)
代谢
叔戊基甲基醚已知的人类代谢物包括叔戊醇。
Tert-amyl methyl ether has known human metabolites that include tert-amyl alcohol.
来源:NORMAN Suspect List Exchange
毒理性
  • 毒性总结
人体健康。 tert-戊基甲基醚(TAME)能从大鼠肠道有效吸收。TAME 从肺部快速吸收;呼吸净吸收率为40%。关于tert-甲基叔丁醚(MTBE)的研究表明,通过皮肤吸收的TAME剂量三分之一或更少。在大鼠中,TAME在体内分布均匀。尿液是主要的消除途径。根据人体志愿者研究,血液中的半衰期在1.2到6.3小时之间。主要的尿液代谢物是2-甲基-2,3-丁二醇,2-羟基-2-甲基丁酸和3-羟基-3-甲基丁酸。尿液中的自由和结合的TAA(tert-戊醇)和TAME只是次要的代谢物。TAME的急性毒性不高。通过吸入的LC50值超过5.3 mg/l。预测的口服LD50值,雌性为1602 mg/kg,雄性为2417 mg/kg,合并为2152 mg/kg。尽管没有可用的皮肤研究,但通过皮肤的毒性不太可能高于口服途径。TAME对皮肤或眼睛无刺激性,也不会引起过敏。TAME在重复暴露下的毒性并不严重。基于F-344大鼠90天研究中肝脏、肾上腺和肾脏的器官重量增加,选择了250 ppm(1060 mg/立方米)作为呼吸道暴露的无明显有害作用浓度(NOAEC)。通过口服途径,基于雄性大鼠肾上腺重量增加,建立了125 mg/kg的最低观察到有害作用水平(LOAEL)。TAME在细菌试验或中国仓鼠卵巢细胞中没有引起点突变。在中国仓鼠卵巢细胞体外试验中,TAME在代谢激活存在时引起明显的剂量相关染色体畸变增加。然而,在小鼠中进行的微核研究在所有采样时间点均为阴性。根据现有数据,TAME不能被认为是致突变物。没有可靠的致癌性研究。在一项两代生殖研究中,TAME在大鼠中不具有生殖毒性(NOAEC为3000 ppm(12720 mg/立方米))。在同样的研究中,后代毒性和成年系统性毒性的NOAEC为250 ppm。在一项大鼠发育毒性研究中,唯一注意的是在3500 ppm时胎儿体重减轻。根据小鼠发育毒性研究,基于在1500 ppm和3500 ppm时看到的畸形(腭裂),选择了250 ppm(1063 mg/立方米)作为发育效应的无明显有害作用浓度(NOAEC)。腭裂可能是与麻醉和/或母体压力相关的次要效应。考虑到腭裂仅在非常高的TAME浓度下观察到,并且在大鼠中没有看到不良的发育效应,因此小鼠中观察到的效应不太可能对人类产生影响。环境。TAME是一种挥发性(在20°C时vp为90 hPa)液体,它在水中稳定且适度溶解(在20°C时为11 g/L)。在20°C时,环境间隔之间的静态平衡分配如下:空气95.6,水4.25,沉积物0.001和土壤0.038(EQC ver1.1)。TAME在土壤中非常易移动,可能会轻易渗入地下水(随水运输)。TAME容易从表层土壤和地表水挥发到大气中。光降解是环境中去除的主要途径,降解半衰期约为3到5天。在土壤、沉积物、地表水和地下水中,TAME的生物降解非常缓慢,可以认为在这些间隔中是持久的。然而,在连续接触TAME的工业废水污水处理厂,可能存在能够有效降解TAME的适应性微生物种群。TAME不太可能在高程度生物浓缩或长时间在生物体内积累。测量的log Kow为1.55,计算的鱼类的生物浓缩因子(BCF)为4。以下是最小的有效水生急性毒性测试(鱼、水蚤、藻类和细菌)结果。没有陆地毒性结果。(1):虹鳟鱼:96小时-LC50 = 580 mg/L(2):大型蚤:48小时-EC50 = 100 mg/L和Americamysis bahia:96小时-LC50 = 14 mg/L,28天NOEC = 3.4 mg/L(3):拟柱胞藻:72小时-EbC50 = 230 mg/L;72小时-ErC50 = 780 mg/L;72小时-NOEC = 77 mg/L(4):假单胞菌,细胞增殖抑制试验:16小时-EC10 = 25 mg/L;16小时-EC50 580 mg/L。基于Americamysis bahia慢性测试结果(AF=50),水生PNEC为0.068 mg/L,间歇释放的PNEC为1.4 mg/L(AF=10)。微生物的PNEC为25 mg/L(AF=1)。陆地PNEC为0.035 mg/kg湿重,从水生
Human Health. tert-amyl methyl ether (TAME) is absorbed efficiently from the rat intestine. TAME is rapidly absorbed from lungs; the respiration net uptake is 40 %. Studies with tert-methyl butyl ether (MTBE) suggest one third or less of a dermal TAME dose is absorbed. In rats, TAME is distributed evenly in the body. Urine is the main route of elimination. Based on human volunteer studies, the half-lives in blood varied between 1.2 and 6.3 hours. The main urine metabolites are 2-methyl-2,3- butanediol, 2-hydroxy-2-methylbutyric acid and 3-hydroxy-3-methylbutyric acid. Free and conjugated TAA (tert-amyl alcohol) and TAME were only minor metabolites in urine. The acute toxicity of TAME is not high. The LC50 value via inhalation is over 5.3 mg/l. The predicted oral LD50 was for females 1602 mg/kg, males 2417 mg/kg and combined 2152 mg/kg. Although no dermal studies were available, toxicity via skin is not likely to be higher than via oral route. TAME is not irritating to skin or eyes or sensitizing. The toxicity caused by TAME in repeated exposures is not severe. A NOAEC of 250 ppm (1060 mg/cu m) is selected for respiratory exposure based on the organ weight increases of liver, adrenals and kidneys seen in a 90 day study in F-344 rat with both sexes. Via oral route, a LOAEL of 125 mg/kg was established based on the adrenal weight increase in the male rats. TAME did not cause point mutations in bacterial assays or in Chinese hamster ovary cell. In Chinese hamster ovary cells in vitro, TAME caused a clear dose-related increase of chromosome aberrations, which increased when metabolic activation was present. However, a micronucleus study conducted in mice was negative at all sampling times. In the light of present data, TAME cannot be considered mutagenic. No reliable carcinogenicity studies were available In a 2-generation reproductive study, TAME was not toxic to reproduction in rat (NOAEC of 3000 ppm (12720 mg/cu m). In the same study, NOAEC of 250 ppm was found for offspring toxicity and for adult systemic toxicity. In a developmental toxicity study with rats, the only noted effect was foetal weight reduction at 3500 ppm. From a developmental toxicity study with mice, a NOAEC of 250 ppm (1063 mg/cu m) was selected for developmental effects based on malformations (cleft palate) seen at 1500 ppm and 3500 ppm. It is plausible that cleft palates are a secondary effect related to anesthesia and/or maternal stress. Taking into consideration that the cleft palates were seen only at very high TAME concentrations, and because there were no adverse developmental effects seen in rats, the effect noted in mice is not likely to be of consequence to humans. Environment. TAME is a volatile (vp. 90 hPa at 20 o C) liquid which is hydrolytically stable and moderately soluble in water (11 g/L at 20 oC). Static equilibrium partitioning between environmental compartments at 20 oC is as follows: air 95.6, water 4.25, sediment 0.001 and soil 0.038 (EQC ver1.1). TAME is very mobile in soil and may easily leach to groundwater (transported with water). TAME is easily volatilized into the atmosphere from top soil and surface water. Photodegradation in the atmosphere is the primary route of removal in the environment and degradation half-life is ca. 3 to 5 days. Biodegradation in soil, sediment, surface- and groundwater is very slow and TAME may be regarded persistent in these compartments. However, in industrial waste water sewage treatment plants having continuous TAME exposure, adapted microbial population capable of effectively degrading TAME may exist. It is unlikely that TAME would bioconcentrate in high extent or would accumulate in biota for long time periods. The measured log Kow is 1.55 and the calculated BCF in fish is 4. The lowest valid aquatic acute and (one) chronic toxicity test results for fish, daphnids, algae and bacteria are below. Terrestrial toxicity results are not available. (1): Oncorhynchus mykiss: 96 hr-LC50 = 580 mg/L (2): Daphnia magna: 48 hr-EC50 = 100 mg/L and Americamysis bahia: 96 hr-LC50 = 14 mg/L, 28-day NOEC = 3.4 mg/L (3): Pseudokirchneriella subcapitata: 72 hr-EbC50 = 230 mg/L; 72 hr-ErC50 = 780 mg/L; 72 hr-NOEC = 77 mg/L (4): Pseudomonas putida, cell multiplication inhibition test: 16 hr-EC10 = 25 mg/L; 16 hr-EC50 580 mg/L The aquatic PNEC is 0.068 mg/L based on the Americamysis bahia chronic test result (AF=50) and the PNEC for intermittent release is 1.4 mg/L (AF=10). The PNEC for micro-organism is 25 mg/L (AF=1). The terrestrial PNEC is 0.035 mg/kg wwt calculated from the aquatic PNEC using the equilibrium partitioning method.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 暴露途径
该物质可以通过吸入和摄入被身体吸收。
The substance can be absorbed into the body by inhalation and by ingestion.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
毒理性
  • 吸入症状
晕眩。嗜睡。虚弱。
Dizziness. Drowsiness. Weakness.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
毒理性
  • 皮肤症状
干燥的皮肤。
Dry skin.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
毒理性
  • 摄入症状
见吸入。
See Inhalation.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
吸收、分配和排泄
健康的男性志愿者通过吸入方式接触了汽油添加剂甲基叔丁基醚(MTBE)或叔戊基甲基醚(TAME)。在动态室中进行了4小时的暴露实验,MTBE的浓度为25和75 ppm,TAME的浓度为15和50 ppm。MTBE的平均肺保留率为43 +/- 2.6%;TAME的相应平均值为51 +/- 3.9%。大约52%的MTBE吸收剂量在暴露后44小时内被呼出;对于TAME,相应的数字是30%。MTBE和TAME在血液和呼出气中的浓度在暴露结束时达到最高,而代谢物叔丁醇(TBA)和叔戊醇(TAA)的浓度在暴露后0.5-1小时最高,然后缓慢下降。MTBE和TAME从血液和呼出气中消失时观察到两个连续的半衰期。MTBE在血液中的半衰期约为1.7和3.8小时,TAME的半衰期为1.2和4.9小时。对于TAA,一个大约6小时的半衰期最能描述从血液和呼出气中的消失;对于TBA,消失速度较慢,似乎在24小时内遵循零级动力学。在尿液中,MTBE和TAME的最大浓度在暴露结束或稍后(小于或等于1小时)观察到,半衰期分别为约4小时和8小时。尿液中TAA的浓度遵循一级动力学,半衰期约为8小时,而TBA的消失速度较慢,在浓度高于约10 umol/L时显示零级动力学。大约0.2%的吸入MTBE剂量和0.1%的TAME剂量未改变地通过尿液排出,而在48小时内,自由TBA和TAA的尿排泄分别为1.2%和0.3%。在体外测定的血液/空气和油/血液分配系数分别为MTBE的20和14,TAME的20和37。从两个实验暴露浓度内推,估计对应于8小时时间加权平均(TWA)暴露50 ppm的生物监测行动限值为:班后尿液中MTBE为20 umol/L,班后呼出气中MTBE为1 umol/L,次日早晨尿液中TBA为30 umol/L。对于TAME和TAA,估计对应于8小时TWA暴露20 ppm的浓度为:班后尿液中TAME为6 umol/L,班后呼出气中TAME为0.2 umol/L,次日早晨尿液中TAA为3 umol/L。
Healthy male volunteers were exposed via inhalation to gasoline oxygenates methyl tert-butyl ether (MTBE) or tert-amyl methyl ether (TAME). The 4-hr exposures were carried out in a dynamic chamber at 25 and 75 ppm for MTBE and at 15 and 50 ppm for TAME. The overall mean pulmonary retention of MTBE was 43 +/- 2.6%; the corresponding mean for TAME was 51 +/- 3.9%. Approximately 52% of the absorbed dose of MTBE was exhaled within 44 hr following the exposure; for TAME, the corresponding figure was 30%. MTBE and TAME in blood and exhaled air reached their highest concentrations at the end of exposure, whereas the concentrations of the metabolites tert-butanol (TBA) and tert-amyl alcohol (TAA) concentrations were highest 0.5-1 hr after the exposure and then declined slowly. Two consecutive half-times were observed for the disappearance of MTBE and TAME from blood and exhaled air. The half-times for MTBE in blood were about 1.7 and 3.8 hr and those for TAME 1.2 and 4.9 hr. For TAA, a single half-time of about 6 hr best described the disappearance from blood and exhaled air; for TBA, the disappearance was slow and seemed to follow zero-order kinetics for 24 hr. In urine, maximal concentrations of MTBE and TAME were observed toward the end of exposure or slightly (< or = 1 hr) after the exposure and showed half-times of about 4 hr and 8 hr, respectively. Urinary concentrations of TAA followed first-order kinetics with a half-time of about 8 hr, whereas the disappearance of TBA was slower and showed zero-order kinetics at concentrations above approx. 10 umol/L. Approximately 0.2% of the inhaled dose of MTBE and 0.1% of the dose of TAME was excreted unchanged in urine, whereas the urinary excretion of free TBA and TAA was 1.2% and 0.3% within 48 hr. The blood/air and oil/blood partition coefficients, determined in vitro, were 20 and 14 for MTBE and 20 and 37 for TAME. By intrapolation from the two experimental exposure concentrations, biomonitoring action limits corresponding to an 8-hr time-weighted average (TWA) exposure of 50 ppm was estimated to be 20 umol/L for post-shift urinary MTBE, 1 umol/L for exhaled air MTBE in a post-shift sample, and 30 umol/L for urinary TBA in a next-morning specimen. For TAME and TAA, concentrations corresponding to an 8-hr TWA exposure at 20 ppm were estimated to be 6 umol/L (TAME in post-shift urine), 0.2 umol/L (TAME in post-shift exhaled air), and 3 umol/L (TAA in next morning urine).
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
吸入甲基叔丁基醚(MTBE)、乙基叔丁基醚(ETBE)和叔戊基甲基醚(TAME)后,大鼠和人类都能迅速吸收这些物质;在停止暴露后,大鼠通过呼出和生物转化为尿液代谢物的清除速度很快。与大鼠相比,人类的呼出清除速度较慢。在相同条件下经呼吸道暴露后,MTBE和ETBE在人类和大鼠体内的生物转化在质和量上都是相似的。TAME的生物转化程度在大鼠和人类中也是相似的;然而,代谢途径是不同的。
After inhalation exposure methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME) are rapidly taken up by both rats and humans; after termination of exposure, clearance by exhalation and biotransformation to urinary metabolites is rapid in rats. In humans, clearance by exhalation is slower in comparison to rats. Biotransformation of MTBE and ETBE is both qualitatively and quantitatively similar in humans and rats after inhalation exposure under identical conditions. The extent of biotransformation of TAME is also quantitatively similar in rats and humans; the metabolic pathways, however, are different. ...
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
叔戊基甲基醚(TAME)能从大鼠肠道有效地被吸收。TAME能从肺部快速吸收;呼吸净摄取率为40%。关于叔甲基丁基醚(MTBE)的研究表明,通过皮肤吸收的TAME剂量只有三分之一或更少。在大鼠体内,TAME在全身分布均匀。尿液是主要的排出途径。
Tert-amyl methyl ether (TAME) is absorbed efficiently from the rat intestine. TAME is rapidly absorbed from lungs; the respiration net uptake is 40 %. Studies with tert-methyl butyl ether (MTBE) suggest one third or less of a dermal TAME dose is absorbed. In rats, TAME is distributed evenly in the body. Urine is the main route of elimination.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
剂量水平、暴露持续时间和给药途径对叔戊基甲基醚(TAME)在雄性和雌性F344大鼠以及CD-1小鼠体内的代谢和分布的影响进行了研究,通过吸入或灌胃给药。在暴露后48小时内,超过96%的给药放射性物质通过空气呼出(16-71%)或通过尿液和粪便排出(28-72%)。吸入暴露后,小鼠对[14C]TAME的相对摄取量比大鼠高两到三倍。在大鼠和小鼠的尿液中排出的代谢物是通过将叔戊醇(TAA)与葡萄糖醛酸结合、将TAA氧化为2,3-二羟基-2-甲基丁烷以及将2,3-二羟基-2-甲基丁烷与葡萄糖醛酸结合形成的。随着暴露浓度的增加,TAME的摄取和代谢达到饱和,表现为总[14C]TAME当量的相对摄取量减少,以及作为挥发性物质呼出的百分比增加。TAA的P-450氧化达到饱和的迹象是,随着暴露浓度的增加,2,3-二羟基-2-甲基丁烷及其葡萄糖醛酸结合物的比例减少。
The effect of dose level, duration of exposure and route of administration on the metabolism and distribution of tert-amyl methyl ether (TAME) were investigated in male and female F344 rats and CD-1 mice following inhalation or gavage administration. By 48 hr after exposure, >96% of the administered radioactivity was expired in air (16-71%) or eliminated in urine and feces (28-72%). Following inhalation exposure, mice had a two- to threefold greater relative uptake of [14C]TAME compared with rats. Metabolites were excreted in urine of rats and mice that are formed by glucuronide conjugation of tertiary amyl alcohol (TAA), oxidation of TAA to 2,3-dihydroxy-2-methylbutane and glucuronide conjugation of 2,3-dihydroxy-2-methylbutane. A saturation in the uptake and metabolism of TAME with increased exposure concentration was indicated by a decreased relative uptake of total [14C]TAME equivalents and an increase in the percentage expired as volatiles. A saturation of P-450 oxidation of TAA was indicated by a disproportional decrease of 2,3-dihydroxy-2-methylbutane and its glucuronide conjugate with increased exposure concentration.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险等级:
    3
  • 危险品标志:
    Xn,F,T
  • 安全说明:
    S16,S26,S36/37,S39,S45
  • 危险类别码:
    R20/22,R36/38,R11
  • WGK Germany:
    3
  • RTECS号:
    EK4421000
  • 海关编码:
    2909199090
  • 包装等级:
    II
  • 危险类别:
    3.1
  • 危险品运输编号:
    UN 3271 3/PG 2
  • 储存条件:
    密封保存,应储存在阴凉干燥的仓库中,并远离易燃易爆区域。

SDS

SDS:ca9ee5c14592d276738db1938320cc74
查看
1.1 产品标识符
: 叔戊基甲基醚 溶液
产品名称
: Supelco
1.2 鉴别的其他方法
无数据资料
1.3 有关的确定了的物质或混合物的用途和建议不适合的用途
仅供科研用途,不作为药物、家庭备用药或其它用途。

模块 2. 危险性概述
2.1 GHS分类
急性毒性, 经口 (类别3)
急性毒性, 吸入 (类别3)
急性毒性, 经皮 (类别3)
特异性靶器官系统毒性(一次接触) (类别1)
2.2 GHS 标记要素,包括预防性的陈述
象形图
警示词 危险
危险申明
H301 吞咽会中毒
H311 皮肤接触会中毒
H331 吸入会中毒。
H370 对器官造成损害。
警告申明
预防
P260 不要吸入粉尘/ 烟/ 气体/ 烟雾/ 蒸汽/ 喷雾。
P264 操作后彻底清洁皮肤。
P270 使用本产品时不要进食、饮水或吸烟。
P271 只能在室外或通风良好之处使用。
P280 穿戴防护手套/ 防护服。
措施
P301 + P310 如果吞下去了: 立即呼救解毒中心或医生。
P302 + P352 如与皮肤接触,用大量肥皂和水冲洗受感染部位.
P304 + P340 如吸入,将患者移至新鲜空气处并保持呼吸顺畅的姿势休息.
P307 + P311 如接触到:呼叫解毒中心或医生。
P322 具体措施(见本标签上提供的急救指导)。
P330 漱口。
P361 立即去除/脱掉所有沾染的衣服。
P363 沾染的衣服清洗后方可重新使用。
储存
P403 + P233 存放于通风良的地方。 保持容器密闭。
P405 存放处须加锁。
处理
P501 将内容物/ 容器处理到得到批准的废物处理厂。
2.3 其它危害物 - 无

模块 3. 成分/组成信息
3.2 混合物
: C6H14O
分子式
: 102.17 g/mol
分子量
组分 分类 浓度或浓度范围
Methanol
-
CAS 号 67-56-1 Flam. Liq. 2; Acute Tox. 3;
EC-编号 200-659-6 STOT SE 1; H225, H301,
索引编号 603-001-00-X H311, H331, H370
2-Methoxy-2-methylbutane
CAS 号 994-05-8 Flam. Liq. 2; Acute Tox. 4; 0.1 - 0.25 %
EC-编号 213-611-4 STOT SE 3; H225, H302,
索引编号 603-213-00-2 H336
如需在本章节中提及的H类告知和R类描述的全部文字说明,请见第16章节.

模块 4. 急救措施
4.1 必要的急救措施描述
一般的建议
请教医生。 出示此安全技术说明书给到现场的医生看。
吸入
如果吸入,请将患者移到新鲜空气处。 如果停止了呼吸,给于人工呼吸。 请教医生。
皮肤接触
用肥皂和大量的水冲洗。 立即将患者送往医院。 请教医生。
眼睛接触
用水冲洗眼睛作为预防措施。
食入
切勿给失去知觉者从嘴里喂食任何东西。 用水漱口。 请教医生。
4.2 主要症状和影响,急性和迟发效应
如吞服甲醇可能致命或致盲。, 不能制成无毒性的。, 包括了由吞入引起的影响:, 恶心, 头晕, 消化系统失调,
无力, 混乱, 昏睡, 失去知觉, 据我们所知,此化学,物理和毒性性质尚未经完整的研究。
4.3 及时的医疗处理和所需的特殊处理的说明和指示
无数据资料

模块 5. 消防措施
5.1 灭火介质
灭火方法及灭火剂
用水雾,耐醇泡沫,干粉或二氧化碳灭火。
5.2 源于此物质或混合物的特别的危害
碳氧化物
5.3 给消防员的建议
如必要的话,戴自给式呼吸器去救火。
5.4 进一步信息
无数据资料

模块 6. 泄露应急处理
6.1 人员的预防,防护设备和紧急处理程序
戴呼吸罩。 防止吸入蒸汽、气雾或气体。 保证充分的通风。 将人员撤离到安全区域。
6.2 环境保护措施
在确保安全的前提下,采取措施防止进一步的泄漏或溢出。 不要让产物进入下水道。
6.3 抑制和清除溢出物的方法和材料
用惰性吸附材料吸收并当作危险废品处理。 存放进适当的闭口容器中待处理。
6.4 参考其他部分
丢弃处理请参阅第13节。

模块 7. 操作处置与储存
7.1 安全操作的注意事项
避免接触皮肤和眼睛。 防止吸入蒸汽和烟雾。
7.2 安全储存的条件,包括任何不兼容性
贮存在阴凉处。 容器保持紧闭,储存在干燥通风处。
打开了的容器必须仔细重新封口并保持竖放位置以防止泄漏。
7.3 特定用途
无数据资料

模块 8. 接触控制和个体防护
8.1 容许浓度
最高容许浓度
组分 CAS 号 值 容许浓度 基准
Methanol 67-56-1 PC- 25 mg/m3 工作场所有害因素职业接触限值 -
TWA 化学有害因素
备注 皮
PC- 50 mg/m3 工作场所有害因素职业接触限值 -
STEL 化学有害因素

8.2 暴露控制
适当的技术控制
避免与皮肤、眼睛和衣服接触。 休息以前和操作过此产品之后立即洗手。
个体防护设备
眼/面保护
面罩與安全眼鏡请使用经官方标准如NIOSH (美国) 或 EN 166(欧盟) 检测与批准的设备防护眼部。
皮肤保护
戴手套取 手套在使用前必须受检查。
请使用合适的方法脱除手套(不要接触手套外部表面),避免任何皮肤部位接触此产品.
使用后请将被污染过的手套根据相关法律法规和有效的实验室规章程序谨慎处理. 请清洗并吹干双手
所选择的保护手套必须符合EU的89/686/EEC规定和从它衍生出来的EN 376标准。
身体保护
全套防化学试剂工作服, 防护设备的类型必须根据特定工作场所中的危险物的浓度和含量来选择。
呼吸系统防护
如危险性评测显示需要使用空气净化的防毒面具,请使用全面罩式多功能防毒面具(US)或ABEK型
(EN
14387)防毒面具筒作为工程控制的候补。如果防毒面具是保护的唯一方式,则使用全面罩式送风防
毒面具。 呼吸器使用经过测试并通过政府标准如NIOSH(US)或CEN(EU)的呼吸器和零件。

模块 9. 理化特性
9.1 基本的理化特性的信息
a) 外观与性状
形状: 液体
b) 气味
无数据资料
c) 气味阈值
无数据资料
d) pH值
无数据资料
e) 熔点/凝固点
无数据资料
f) 起始沸点和沸程
无数据资料
g) 闪点
无数据资料
h) 蒸发速率
无数据资料
i) 易燃性(固体,气体)
无数据资料
j) 高的/低的燃烧性或爆炸性限度 无数据资料
k) 蒸汽压
无数据资料
l) 蒸汽密度
无数据资料
m) 相对密度
无数据资料
n) 水溶性
无数据资料
o) n-辛醇/水分配系数
无数据资料
p) 自燃温度
无数据资料
q) 分解温度
无数据资料
r) 粘度
无数据资料

模块 10. 稳定性和反应活性
10.1 反应性
无数据资料
10.2 稳定性
无数据资料
10.3 危险反应的可能性
无数据资料
10.4 应避免的条件
无数据资料
10.5 不兼容的材料
酸, 氧化剂, 碱金属, 强氧化剂, 酰氯, 酸酐, 还原剂
10.6 危险的分解产物
其它分解产物 - 无数据资料

模块 11. 毒理学资料
11.1 毒理学影响的信息
急性毒性
皮肤刺激或腐蚀
无数据资料
眼睛刺激或腐蚀
无数据资料
呼吸道或皮肤过敏
无数据资料
生殖细胞突变性
无数据资料
致癌性
IARC:
此产品中没有大于或等于 0。1%含量的组分被 IARC鉴别为可能的或肯定的人类致癌物。
生殖毒性
无数据资料
特异性靶器官系统毒性(一次接触)
无数据资料
特异性靶器官系统毒性(反复接触)
无数据资料
吸入危险
无数据资料
潜在的健康影响
吸入 吸入会中毒。 可能引起呼吸道刺激。
摄入 误吞会中毒。
皮肤 如果被皮肤吸收会有毒性 可能引起皮肤刺激。
眼睛 可能引起眼睛刺激。
接触后的征兆和症状
如吞服甲醇可能致命或致盲。, 不能制成无毒性的。, 包括了由吞入引起的影响:, 恶心, 头晕, 消化系统失调,
无力, 混乱, 昏睡, 失去知觉, 据我们所知,此化学,物理和毒性性质尚未经完整的研究。
附加说明
化学物质毒性作用登记: 无数据资料

模块 12. 生态学资料
12.1 生态毒性
无数据资料
12.2 持久存留性和降解性
无数据资料
12.3 潜在的生物蓄积性
无数据资料
12.4 土壤中的迁移性
无数据资料
12.5 PBT 和 vPvB的结果评价
无数据资料
12.6 其它不利的影响
无数据资料

模块 13. 废弃处置
13.1 废物处理方法
产品
将剩余的和未回收的溶液交给处理公司。
受污染的容器和包装
作为未用过的产品弃置。

模块 14. 运输信息
14.1 联合国危险货物编号
欧洲陆运危规: 1230 国际海运危规: 1230 国际空运危规: 1230
14.2 联合国(UN)规定的名称
欧洲陆运危规: METHANOL
国际海运危规: METHANOL
国际空运危规: Methanol
14.3 运输危险类别
欧洲陆运危规: 3 (6.1) 国际海运危规: 3 (6.1) 国际空运危规: 3 (6.1)
14.4 包裹组
欧洲陆运危规: II 国际海运危规: II 国际空运危规: II
14.5 环境危险
欧洲陆运危规: 否 国际海运危规 海运污染物: 否 国际空运危规: 否
14.6 对使用者的特别提醒
无数据资料

模块 16. 其他信息
第3节提及的危险代码和风险代码的文字说明
Acute Tox. 急性毒性
Flam. Liq. 易燃液体
H225 高度易燃液体和蒸气
H301 吞咽会中毒
H302 吞咽有害。
H311 皮肤接触会中毒
H331 吸入会中毒。
H336 可能引起昏睡或眩晕。
H370 对器官造成损害。
STOT SE 特异性靶器官系统毒性(一次接触)
进一步信息
版权所有:2012 Co. LLC. 公司。许可无限制纸张拷贝,仅限于内部使用。
上述信息视为正确,但不包含所有的信息,仅作为指引使用。本文件中的信息是基于我们目前所知,就正
确的安全提示来说适用于本品。该信息不代表对此产品性质的保证。
参见发票或包装条的反面。


模块 15 - 法规信息
N/A




上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    甲基叔戊醚 在 Amberlyst 15 作用下, 以 甲醇 为溶剂, 生成 2-甲基-丁烯
    参考文献:
    名称:
    tert-Amyl Methyl Ether (TAME). Thermodynamic Analysis of Reaction Equilibria in the Liquid Phase
    摘要:
    Ethers derived from C(5) olefin streams provide a good mix of octane-enhancing and carbon monoxide-reducing qualities and are, therefore, being considered as a replacement for the more common isobutylene-derived fuel additives such as methyl tert-butyl ether (MTBE). This paper provides data on the thermodynamic reaction equilibria for the synthesis of tert-amyl methyl ether (TAME), which is produced from the etherification reaction of 2-methyl-1-butene and 2-methyl-2-butene with methanol. Thermochemical parameters for the reaction mixture are experimentally verified, and expressions for the thermodynamic equilibrium constants as a function of temperature are developed. A corrected value for the Gibbs free energy of formation for TAME is provided.
    DOI:
    10.1021/je990191p
  • 作为产物:
    参考文献:
    名称:
    Preparation and recovery of ethers
    摘要:
    甲基叔丁基醚可以在正丁醇存在下进行萃取蒸馏,从醚化反应的废液中回收。
    公开号:
    US04148695A1
  • 作为试剂:
    描述:
    L-色氨酸苯甲醇对甲苯磺酸盐酸甲基叔戊醚 作用下, 以 2-甲基四氢呋喃1,4-二氧六环 为溶剂, 反应 24.0h, 以62%的产率得到L-色氨酸苄酯盐酸盐
    参考文献:
    名称:
    通过Fischer-Speier反应在绿色醚中制备对映纯的蛋氨酸,精氨酸,色氨酸和脯氨酸苄基酯。
    摘要:
    制备氨基酸苄酯的甲苯磺酸盐(其对映异构体是非常重要的合成中间体)的最简单方法是用苯甲醇和对氨基苯甲酸处理氨基酸-甲苯磺酸在回流的水-共沸溶剂中(Fischer–Speier酯化)。然而,迄今为止,文献仅提出了必须绝对避免使用的有害溶剂,例如苯,四氯化碳和氯仿,或由于沸腾的水共沸物太高而引起外消旋作用的溶剂,例如甲苯和苯甲醇。另一方面,我们最近报道了几种氨基酸苄基酯对环己烷的替代成功使用,对色氨酸,精氨酸和蛋氨酸等“有问题的”氨基酸不适用或效率不高,事实上,简单的Fischer-Speier酯化反应在文献中没有描述或没有很好地举例说明。因此,更多极性的溶剂,尤其是绿色醚CPME,TAME和Me-THF,选择并首先考虑用于制备蛋氨酸苄基酯,以前是在环己烷中以中等收率完成的。丢弃CPME和TAME后,由于分别在酸性条件下引起外消旋和分解,因此我们重点研究了Me-THF。在该醚中,可以以良好的产率
    DOI:
    10.1007/s00726-018-2599-2
点击查看最新优质反应信息

文献信息

  • THIENYLPYRIDYLCARBOXAMIDES
    申请人:Dunkel Ralf
    公开号:US20110105564A1
    公开(公告)日:2011-05-05
    Novel thienylpyridylcarboxamides of the formula (I) The present application is also directed to a plurality of processes for preparing these compounds and their use for controlling unwanted microorganisms, and also novel intermediates and their preparation.
    新型噻吩基吡啶基羧酰胺的化学式(I) 本申请还涉及多种制备这些化合物的方法,以及它们用于控制不受欢迎的微生物的用途,还有新颖的中间体及其制备。
  • Method for the Production of N-Substituted (3-Dihalomethyl-1-Methyl-Pyrazole-4-yl) Carboxamides
    申请人:Zierke Thomas
    公开号:US20100174094A1
    公开(公告)日:2010-07-08
    The present invention relates to a process for preparing N-substituted (3-dihalomethylpyrazol-4-yl)carboxamides of the formula (I) in which R 1 is optionally substituted phenyl or C 3 -C 7 -cycloalkyl, R 1a is hydrogen or fluorine, or R 1a together with R 1 is optionally substituted C 3 -C 5 -alkanediyl or C 5 -C 7 -cycloalkanediyl, R 2 is C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl or C 1 -C 4 -alkoxy-C 1 -C 2 -alkyl, X is F or Cl and n is 0, 1, 2 or 3; which comprises A) providing a compound of the formula (II) in which X is F or Cl, Y is Cl or Br and R 2 has one of the meanings given above and B) reacting a compound of the formula (II) with carbon monoxide and a compound of the formula (III) in which R 1 , R 1a and n have one of the meanings given above; in the presence of a palladium catalyst; to intermediates used for the preparation according to the process according to the invention, and also to processes for their preparation.
    本发明涉及一种制备式(I)的N-取代(3-二卤甲基吡唑-4-基)羧酰胺的方法 其中R1是可选的取代苯基或C3-C7环烷基,R1a是氢或氟,或者R1a与R1一起是可选的取代C3-C5-烷二基或C5-C7-环烷二基,R2是C1-C6-烷基,C2-C6-烯基,C2-C6-炔基或C1-C4-烷氧基-C1-C2-烷基,X是F或Cl,n为0、1、2或3;包括 A)提供式(II)的化合物 其中X是F或Cl,Y是Cl或Br,R2具有上述给定的含义之一 B)将式(II)的化合物与一氧化碳和式(III)的化合物反应 其中R1、R1a和n具有上述给定的含义之一;在钯催化剂的存在下; 用于根据本发明的方法制备的中间体,以及用于它们的制备的方法。
  • DERIVATIVES OF 2-PYRIDIN-2-YL-PYRAZOL-3(2H)-ONE, PREPARATION AND THERAPEUTIC USE THEREOF AS HIF ACTIVATORS
    申请人:ALTENBURGER Jean-Michel
    公开号:US20110294788A1
    公开(公告)日:2011-12-01
    The present invention relates to novel substituted dihydropyrazolone derivatives, to their preparation and to their therapeutic use as activators of the transcription factor HIF.
    本发明涉及新型取代二氢吡唑酮衍生物,其制备以及作为转录因子HIF激活剂的治疗用途。
  • [EN] CHEMICAL PROCESS<br/>[FR] PROCÉDÉ CHIMIQUE
    申请人:SYNGENTA CROP PROTECTION AG
    公开号:WO2021234082A1
    公开(公告)日:2021-11-25
    The present invention provides, inter alia, a process for producing a compound of formula (I)) wherein the substituents are as defined in claim 1. The present invention further provides intermediate compounds utilised in said process, and methods for producing said intermediate compounds.
    本发明提供了一种生产式(I)化合物的方法,其中取代基如权利要求1所定义。本发明还提供了在该方法中使用的中间化合物,以及生产该中间化合物的方法。
  • [EN] CATALYTIC HYDROGENATION OF SUBSTITUTED CYANOPYRIDINES AND PROCESS FOR PREPARING SUBSTITUTED PYRIDYLMETHYLBENZAMIDES<br/>[FR] HYDROGÉNATION CATALYTIQUE DE CYANOPYRIDINES SUBSTITUÉES ET PROCÉDÉ DE PRÉPARATION DE PYRIDYLMÉTHYLBENZAMIDES SUBSTITUÉS
    申请人:BAYER CROPSCIENCE AG
    公开号:WO2016173998A1
    公开(公告)日:2016-11-03
    The present invention relates to novel processes for the preparation of substituted pyridyl- methylbenzamide derivatives of formula (I), in particular 2,6-dichloro-N- [3-chloro-5-(trifluoromethyl)- 2-pyridyl]methyl}benzamide (Fluopicolide), and for the catalytic hydrogenation of substituted cyanopyridine derivatives, in particular 3-chloro-2-cyano-5-trifluoromethylpyridine [= Py-CN] to the corresponding substituted 2-methylaminopyridine derivatives, in particular 2-aminomethyl-3-chloro-5- trifluoromethylpyridine [= Py-methylamine] or salts thereof in the presence of metal catalysts such as in particular palladium catalysts, catalytic modifiers and acids.
    本发明涉及制备取代吡啶基-甲基苯甲酰胺衍生物的新工艺,特别是2,6-二氯-N- [3-氯-5-(三氟甲基)-2-吡啶基]甲基}苯甲酰胺(氟哌啶)的工艺,以及对取代氰基吡啶衍生物进行催化氢化的工艺,特别是3-氯-2-氰基-5-三氟甲基吡啶[= Py-CN]到相应的取代2-甲氨基吡啶衍生物,特别是2-氨基甲基-3-氯-5-三氟甲基吡啶[= Py-甲胺]或其盐在金属催化剂的存在下进行,特别是钯催化剂、催化改性剂和酸。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
查看更多图谱数据,请前往“摩熵化学”平台
mass
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台