Stable under recommended storage conditions. /Dicloxacillin sodium salt monohydrate/
旋光度:
Crystals; decomposes 222-25 °C. Freely soluble in water; soluble in methanol; less soluble in butanol; slightly soluble in acetone and the usual organic solvents. Specific optical rotation: 127.2 deg at 20 °C/D (water) /Dicloxacillin sodium salt monohydrate/
分解:
Hazardous decomposition products formed under fire conditions - Carbon oxides, nitrogen oxides (NOx), sulfur oxides, hydrogen chloride gas, sodium oxides. /Dicloxacillin sodium salt monohydrate/
解离常数:
White to off-white, crystalline powder; soluble in alcohol; faint, characteristic odor; decomposes at 222-225 °C; pKa 2.67 /Dicloxacillin sodium/
碰撞截面:
197 Ų [M+H]+ [CCS Type: TW, Method: calibrated with Waters Major Mix]
Dicloxacillin is partially metabolized to active and inactive metabolites. In one study following administration of a single 500-mg oral dose of dicloxacillin, 10% of the absorbed drug was hydrolyzed to penicilloic acids which are microbiologically inactive. Dicloxacillin is also hydroxylated to a small extent to a microbiologically active metabolite which appears to be slightly less active than dicloxacillin.
IDENTIFICATION AND USE: Dicloxacillin shares the uses of other penicillinase-resistant penicillins, and it is used in treatment of human patients, and animals. HUMAN STUDIES: Dicloxacillin is associated with a high incidence of infusion phlebitis. Acute kidney injury is a known complication of antibiotic use including dicloxacillin. Dicloxacillin exerts toxic effects on cultured endothelial cells. ANIMAL STUDIES: The high degree of protein binding exhibited by dicloxacillin could explain its relatively low chemotherapeutic activity in mice.
Dicloxacillin therapy has not been associated with serum enzyme elevations during treatment, but has been linked to rare instances of clinically apparent, cholestatic hepatitis. The typical time to onset is 1 to 6 weeks and the pattern of serum enzyme elevations is usually cholestatic, although cases with a mixed pattern have also been described (Case 1). The injury usually presents with jaundice and pruritus. Fever, rash and eosinophilia can occur, but are not prominent and autoantibodies are rarely detected. A similar pattern of injury occurs more frequently with flucloxacillin (also called floxacillin) and cloxacillin, two oral isoxazolyl penicillins similar in structure and activity to dicloxacillin, but never approved for use or available in the United States. Similar cholestatic hepatitis arising 1 to 6 weeks after starting therapy occurs with other penicillins.
Absorption of the isoxazolyl penicillins after oral administration is rapid but incomplete: peak blood levels are achieved in 1-1.5 hours. Oral absorption of cloxacillin, dicloxacillin, oxacillin and nafcillin is delayed when the drugs are administered after meals.
Differences in the elimination, distribution, and absorption of dicloxacillin and cloxacillin were studied in a group of healthy individuals with the use of a 2-compartment model. In patients on chronic intermittent hemodialysis, only dicloxacillin was investigated and the results were compared with data obtained in earlier studies on cloxacillin and flucloxacillin. In healthy volunteers the bioavailability after oral administration of 2 g dicloxacillin or 2 g cloxacillin amounted to 48.8% and 36.9% of the dose, respectively, when calculated from the area under the serum concentration-time curve, and to 74.1% and 48.5%, respectively, when calculated from the urinary excretion. Individual variation in bioavailability after oral administration was slightly lower for docloxacillin than for cloxacillin. The higher serum concentrations of dicloxacillin, as compared with cloxacillin, are also attributable to slower (renal) elimination (T 1/2: 42 and 33 min, respectively). Analysis of serum concentrations after intravenous administration of 1 and 2 g dicloxacillin to healthy subjects revealed concentration-dependent kinetics with respect ot renal elimination. In hemodialysis patients the elimination rate of dicloxacillin (T 1/2: 129 min) corresponds with the extrarenal elimination rate in healthy subjects. The bioavailability after oral administration of 1 g in patients is good (75.9% of the dose).
Dicloxacillin, a semisynthetic isoxazolyl penicillin antibiotic, has antimicrobial activity against a wide variety of gram-positive bacteria including Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumonia, Streptococcus epidermidis, Streptococcus viridans, Streptococcus agalactiae, and Neisseria meningitidis. The objective of this study was to evaluate the safety and pharmacokinetic profile of dicloxacillin after single and multiple oral dose in healthy Chinese volunteers. A single-center, open-label, randomized, two-phase study was conducted in 16 subjects. In the single-dose phase, subjects were randomly assigned to receive single doses of 0.25, 0.5, 1.0, and 2.0 g of dicloxacillin sodium capsule in a 4-way crossover design with a 5-day washout period between administrations. In the multiple-dose phase, subjects were assigned to receive 0.25 or 0.5 g every 6 hours for 3 days in a 2-way crossover design. Plasma and urine pharmacokinetic samples were assayed by a validated high-performance liquid chromatography-tandem mass spectrometry method. Pharmacokinetic parameters were calculated and analyzed statistically. Safety assessments were conducted throughout the study. Following a single oral dose of 0.25-2.0 g dicloxacillin sodium, the maximum plasma drug concentration (Cmax) and the corresponding values for the area under the concentration- time curve from 0 to 10 hours (AUC0-10 hr) increased in a dose-proportional manner. The mean elimination half-life (t1/2) was in the range of 1.38-1.71 hours. Dicloxacillin was excreted in its unchanged form via the kidney, with no tendency of accumulation, and varied from 38.65% to 50.10%. No appreciable accumulation of drug occurred with multiple oral doses of dicloxacillin. No serious adverse events were reported. Adverse events were generally mild. Dicloxacillin was safe and well tolerated in the volunteers and displayed linear increases in the Cmax and AUC0-10 hr values.
The purpose of antibiotic treatment in pregnant women is to treat the mother and/or the fetus since it is known that antibiotics administered to the mother cross the placenta and reach the fetus. A comparison of the drug concentration in maternal and fetal plasma gives an indication of the exposure of the fetus to the maternally administered antibiotics. The aim of this study was to review the literature pertaining to the placental transfer of antibiotics in man and to classify the antibiotics according to the type of transfer involved ... 3 types of placental transfers were identified. A few antibiotics cross the placenta rapidly and equilibrate in the maternal and cord plasma; this type of transfer is termed "complete" and include the antibiotics ampicillin, methicillin, cefmenoxime and cefotiam. Antibiotics which show incomplete transfer to the placenta where concentrations are lower in the cord than maternal plasma are said to have "incomplete" transfer and these include azlocillin, dicloxacillin, piperacillin, sulbenicillin, cefoxitin, amikacin, gentamicin, kanamycin, streptomycin, fosfomycin, thiamphenicol, griseofulvin, vancomycin and colistimethate. ... All examined antibiotics cross the human placenta including those with a molecular weight greater than 1000 kDa such as vancomycin and colistimethate but there are 3 distinct types of placental transfer: complete, incomplete and exceeding and most antibiotics exhibit incomplete transfer.
[EN] DERIVATIVES OF AMANITA TOXINS AND THEIR CONJUGATION TO A CELL BINDING MOLECULE<br/>[FR] DÉRIVÉS DE TOXINES D'AMANITES ET LEUR CONJUGAISON À UNE MOLÉCULE DE LIAISON CELLULAIRE
申请人:HANGZHOU DAC BIOTECH CO LTD
公开号:WO2017046658A1
公开(公告)日:2017-03-23
Derivatives of Amernita toxins of Formula (I), wherein, formula (a) R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 8, R 9, R 10, X, L, m, n and Q are defined herein. The preparation of the derivatives. The therapeutic use of the derivatives in the targeted treatment of cancers, autoimmune disorders, and infectious diseases.
[EN] A CONJUGATE OF A CYTOTOXIC AGENT TO A CELL BINDING MOLECULE WITH BRANCHED LINKERS<br/>[FR] CONJUGUÉ D'UN AGENT CYTOTOXIQUE À UNE MOLÉCULE DE LIAISON CELLULAIRE AVEC DES LIEURS RAMIFIÉS
申请人:HANGZHOU DAC BIOTECH CO LTD
公开号:WO2020257998A1
公开(公告)日:2020-12-30
Provided is a conjugation of cytotoxic drug to a cell-binding molecule with a side-chain linker. It provides side-chain linkage methods of making a conjugate of a cytotoxic molecule to a cell-binding ligand, as well as methods of using the conjugate in targeted treatment of cancer, infection and immunological disorders.
[EN] CROSS-LINKED PYRROLOBENZODIAZEPINE DIMER (PBD) DERIVATIVE AND ITS CONJUGATES<br/>[FR] DÉRIVÉ DE DIMÈRE DE PYRROLOBENZODIAZÉPINE RÉTICULÉ (PBD) ET SES CONJUGUÉS
申请人:HANGZHOU DAC BIOTECH CO LTD
公开号:WO2020006722A1
公开(公告)日:2020-01-09
A novel cross-linked cytotoxic agents, pyrrolobenzo-diazepine dimer (PBD) derivatives, and their conjugates to a cell-binding molecule, a method for preparation of the conjugates and the therapeutic use of the conjugates.
The present application provides compounds of formula: Methods of using these compounds for killing bacterial growth and treating bacterial infections are also provided.
本申请提供了以下化合物的公式:还提供了使用这些化合物杀灭细菌生长和治疗细菌感染的方法。
[EN] HETEROCYCLIC AMIDES USEFUL AS PROTEIN MODULATORS<br/>[FR] AMIDES HÉTÉROCYCLIQUES UTILES EN TANT QUE MODULATEURS DE PROTÉINE
申请人:GLAXOSMITHKLINE IP DEV LTD
公开号:WO2017175147A1
公开(公告)日:2017-10-12
Disclosed are compounds having the formula (I-N), wherein q, r, s, A, B, C, RA1, RA2, RB1, RB2, RC1, RC2, R3, R4, R5, R6, R14, R15, R16, and R17, are as defined herein, or a tautomer thereof, or a salt, particularly a pharmaceutically acceptable salt, thereof.