Completely metabolized by the liver, primarily by hydrolysis of the amide bond to produce lysergic acid and a peptide fragment, both inactive and non-toxic. Bromocriptine is metabolized by cytochrome P450 3A4 and excreted primarily in the feces via biliary secretion.
Bromocriptine has known human metabolites that include 5-bromo-N-[2,11-dihydroxy-7-(2-methylpropyl)-5,8-dioxo-4-propan-2-yl-3-oxa-6,9-diazatricyclo[7.3.0.02,6]dodecan-4-yl]-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide and 5-bromo-N-[2,10-dihydroxy-7-(2-methylpropyl)-5,8-dioxo-4-propan-2-yl-3-oxa-6,9-diazatricyclo[7.3.0.02,6]dodecan-4-yl]-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide.
Completely metabolized by the liver, primarily by hydrolysis of the amide bond to produce lysergic acid and a peptide fragment, both inactive and non-toxic. Bromocriptine is metabolized by cytochrome P450 3A4 and excreted primarily in the feces via biliary secretion.
Route of Elimination: Parent drug and metabolites are almost completely excreted via the liver, and only 6% eliminated via the kidney.
Half Life: 2-8 hours
The dopamine D<sub>2</sub> receptor is a 7-transmembrane G-protein coupled receptor associated with G<sub>i</sub> proteins. In lactotrophs, stimulation of dopamine D<sub>2</sub> receptor causes inhibition of adenylyl cyclase, which decreases intracellular cAMP concentrations and blocks IP3-dependent release of Ca<sup>2+</sup> from intracellular stores. Decreases in intracellular calcium levels may also be brought about via inhibition of calcium influx through voltage-gated calcium channels, rather than via inhibition of adenylyl cyclase. Additionally, receptor activation blocks phosphorylation of p42/p44 MAPK and decreases MAPK/ERK kinase phosphorylation. Inhibition of MAPK appears to be mediated by c-Raf and B-Raf-dependent inhibition of MAPK/ERK kinase. Dopamine-stimulated growth hormone release from the pituitary gland is mediated by a decrease in intracellular calcium influx through voltage-gated calcium channels rather than via adenylyl cyclase inhibition. Stimulation of dopamine D<sub>2</sub> receptors in the nigrostriatal pathway leads to improvements in coordinated muscle activity in those with movement disorders.
Ergoline alkaloids have been shown to have the significant affinity towards the 5-HT1 and 5-HT2 serotonin receptors, D1 and D2 dopamine receptors, and alpha-adrenergic receptors. This can result in a number of different effects, including vasoconstriction, convulsions, and hallucinations. Bromocriptine acts by directly stimulating the dopamine receptors in the corpus striatum. (A2914, A2915, A2916, A2941)
Bromocriptine has been reported to cause serum aminotransferase elevations in a small proportion of patients, but these abnormalities are usually mild, asymptomatic and self-limiting even without dose adjustment. In rare instances, more marked elevations occur that may require dose modification or discontinuation and which can recur with rechallenge. In addition, bromocriptine has been implicated in a small number of cases of clinically apparent acute liver injury, but the clinical characteristics and typical pattern of enzyme elevations has not been characterized and case reports of hepatic injury due to bromocriptine have not been published. Thus, bromocriptine is a very rare cause of clinically apparent liver injury and has not been implicated in causing acute liver failure or chronic liver injury.
Approximately 28% of the oral dose is absorbed; however due to a substantial first pass effect, only 6% of the oral dose reaches the systemic circulation unchanged. Bromocriptine and its metabolites appear in the blood as early as 10 minutes following oral administration and peak plasma concentration are reached within 1-1.5 hours. Serum prolactin may be decreased within 2 hours or oral administration with a maximal effect achieved after 8 hours. Growth hormone concentrations in patients with acromegaly is reduced within 1-2 hours with a single oral dose of 2.5 mg and decreased growth hormone concentrations persist for at least 4-5 hours.
来源:DrugBank
吸收、分配和排泄
消除途径
原药和代谢物几乎完全通过肝脏排泄,仅有6%通过肾脏消除。
Parent drug and metabolites are almost completely excreted via the liver, and only 6% eliminated via the kidney.
[EN] ACC INHIBITORS AND USES THEREOF<br/>[FR] INHIBITEURS DE L'ACC ET UTILISATIONS ASSOCIÉES
申请人:GILEAD APOLLO LLC
公开号:WO2017075056A1
公开(公告)日:2017-05-04
The present invention provides compounds I and II useful as inhibitors of Acetyl CoA Carboxylase (ACC), compositions thereof, and methods of using the same.
[EN] COMPOUNDS AND THEIR USE AS BACE INHIBITORS<br/>[FR] COMPOSÉS ET LEUR UTILISATION EN TANT QU'INHIBITEURS DE BACE
申请人:ASTRAZENECA AB
公开号:WO2016055858A1
公开(公告)日:2016-04-14
The present application relates to compounds of formula (I), (la), or (lb) and their pharmaceutical compositions/preparations. This application further relates to methods of treating or preventing Αβ-related pathologies such as Down's syndrome, β- amyloid angiopathy such as but not limited to cerebral amyloid angiopathy or hereditary cerebral hemorrhage, disorders associated with cognitive impairment such as but not limited to MCI ("mild cognitive impairment"), Alzheimer's disease, memory loss, attention deficit symptoms associated with Alzheimer's disease, neurodegeneration associated with diseases such as Alzheimer's disease or dementia, including dementia of mixed vascular and degenerative origin, pre-senile dementia, senile dementia and dementia associated with Parkinson's disease.
New Drug Delivery System for Crossing the Blood Brain Barrier
申请人:Lipshutz H. Bruce
公开号:US20070203080A1
公开(公告)日:2007-08-30
New ubiquinol analogs are disclosed, as well as methods of using these compounds to deliver drug moieties to the body.
新的泛醌类似物被披露,以及利用这些化合物将药物基团输送到人体的方法。
[EN] NOVEL COMPOUNDS, THEIR PREPARATION AND USE<br/>[FR] NOUVEAUX COMPOSES, LEUR PREPARATION ET LEUR UTILISATION
申请人:NOVO NORDISK AS
公开号:WO2005105736A1
公开(公告)日:2005-11-10
Novel compounds of the general formula (I), the use of these compounds as phar- maceutical compositions, pharmaceutical compositions comprising the compounds and methods of treatment employing these compounds and compositions. The present compounds may be useful in the treatment and/or prevention of conditions mediated by Peroxisome Proliferator-Activated Receptors (PPAR), in particular the PPARδ suptype.
[EN] METHYL OXAZOLE OREXIN RECEPTOR ANTAGONISTS<br/>[FR] MÉTHYLOXAZOLES ANTAGONISTES DU RÉCEPTEUR DE L'OREXINE
申请人:MERCK SHARP & DOHME
公开号:WO2016089721A1
公开(公告)日:2016-06-09
The present invention is directed to methyl oxazole compounds which are antagonists of orexin receptors. The present invention is also directed to uses of the compounds described herein in the potential treatment or prevention of neurological and psychiatric disorders and diseases in which orexin receptors are involved. The present invention is also directed to compositions comprising these compounds. The present invention is also directed to uses of these compositions in the potential prevention or treatment of such diseases in which orexin receptors are involved.