This review outlines a decade of research that employs quantitative kinetic methods of autooxidation to phospholipids aggregated into membranes. The classical rate law for autoxidation:[Formula: see text]was found to apply to heterogeneous systems of bilayers and micelles, where kp and 2kt. are the rate constants for chain propagation and termination, respectively, and Ri, the rate of chain initiation, is controlled by thermal initiators. The oxidizability of a typical lipid chain, linoleate 18:2, at 30 °C was similar (0.02–0.04 M−1/2 s−1/2) in different media (solution, micelles, bilayers) and for different procedures using water-soluble or lipid-soluble initiators and inhibitors. A reduction in the absolute rate constant for termination, 2kt by a hundredfold in bilayers of dilinoleoylphosphatidyl choline (DLPC) compared to that in tert-butyl alcohol solution, and a drop in the kp by a factor of five are interpreted in terms of diffusion of polarized peroxyl radicals from the hydrophobic bilayer phase to the aqueous surface, where peroxyls are strongly solvated by water. Such phenomena may also account for significant changes as observed by 31P NMR spectra in bilayer lamellar structure accompanying extensive peroxidation. Analysis of the hydroperoxides formed by peroxidation of mixed bilayers of DLPC + DPPC (16:0) initiated by a water-soluble initiator, azobis(2-amidinopropane•HCl) (ABAP), showed a linear trend between the ratio of cis, trans to trans, trans geometrical isomeric hydroperoxides and [DPLC] consistent with a peroxidation mechanism proposed in homogeneous solution.The antioxidant activities, kinh, of three classes of antioxidants: (a) polyalkyl-6-hydroxychromans (e.g., vitamin E), (b) polyalkyl-4-methoxyphenols, and (c) trialkylphenols, were measured in DLPC membranes. The results show an overall leveling and depression of kinh values in DLPC membranes in the series (a) (by several orders of magnitude), (b), and (c) compared to known values in solution in chlorobenzene. In aqueous bilayers it is proposed that kinh values are attenuated by hydrogen bonding by water at both the para ether oxygen and phenolic groups. Restricted diffusion (e.g., of α-tocopherol) may also reduce antioxidant activities in membranes. A synergistic effect between ascorbic acid and α-tocopherol was discovered under conditions of inhibited peroxidation of linoleate in SDS micelles. The natural peptide glutathione, GSH, however, acts as a co-antioxidant with vitamin E by trapping peroxyls in the aqueous phase.Solid cholesterol was found to partition directly into PC lipsomes by shaking, above or below the phase transition temperature, and membrane-bound cholesterol, unlike the solid, undergoes facile peroxidation. A water-soluble form of α-tocopherol complexed with bovine serum albumin (α-toc:BSA) is an effective antioxidant for autoxidations of linoleate in SDS micelles. In contrast, α-toc:BSA required a long equilibration time (e.g., 12 h) with liposomes (DLPC) before the α-tocopherol was transferred to the liposomes to provide effective antioxidant action.
这篇评论概述了十年来使用定量动力学方法研究将
磷脂聚集成膜的自氧化过程。自氧化的经典速率定律如下:[公式:见文本] 发现适用于双分子层和胶束等异质系统,其中k
p和2k
t是链传播和终止的速率常数,R
i是由热
引发剂控制的链起始速率。在不同介质(溶液、胶束、双分子层)以及使用
水溶性或脂溶性
引发剂和
抑制剂的不同程序中,30°C时典型脂肪链
亚油酸18:2的氧化性相似(0.02-0.04 M
−1/2 s
−1/2)。在二亚油酰
磷脂醯
胆碱(DLPC)双分子层中,终止的绝对速率常数2k
t相对于
叔丁醇溶液降低了一百倍,而传播速率常数k
p降低了五倍,这被解释为极性过氧基自烷基双分子层相向
水相表面扩散,过氧基在
水中强烈溶解。这种现象也可能解释了通过
31P NMR光谱观察到的伴随广泛过氧化的双分子层层状结构的显着变化。通过
水溶性
引发剂azobis(2-amidinopropane•HCl) (
ABAP)引发DLPC +
DPPC (16:0)混合双分子层的过氧化形成的过氧化物的分析显示了顺式、反式与反式、反式几何异构过氧化物比例与[DPLC]之间的线性趋势,与在均相溶液中提出的过氧化机制一致。三类
抗氧化剂:(a)聚烷基-6-羟基
色酮(例如,
维生素E)、(b)聚烷基-
4-甲氧基苯酚和(c)三烷基
酚的抗氧化活性k
inh在DLPC膜中进行了测量。结果显示在DLPC膜中,与
氯苯溶液中已知值相比,(a)(几个数量级)、(b)和(c)系列的k
inh值整体
水平和降低。在
水相双分子层中,提议k
inh值受到
水分子在对位醚氧和
酚基处的氢键作用的衰减。受限扩散(例如α-
生育酚)也可能降低膜中的抗氧化活性。在
SDS胶束中发现了
抗坏血酸和α-
生育酚之间的协同效应,可抑制
亚油酸的过氧化。然而,天然肽
谷胱甘肽GSH通过在
水相中捕获过氧基作为
维生素E的辅助
抗氧化剂。实验证明,固体
胆固醇通过摇动可以直接分配到PC脂质体中,在相变温度之上或之下,与固体不同,膜结合的
胆固醇容易发生过氧化。与
SDS胶束中
亚油酸的自氧化相比,与
牛血清白蛋白(
BSA)形成的
水溶性α-
生育酚复合物(α-
生育酚:
BSA)对
SDS胶束中
亚油酸的自氧化具有有效的抗氧化作用。相反,与脂质体(DLPC)相比,α-
生育酚:
BSA在脂质体中提供有效的抗氧化作用前需要较长的平衡时间(例如12小时)。