摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(E)-3-[4-(Tetrahydro-pyran-2-yloxy)-phenyl]-1-(3-{(E)-3-[4-(tetrahydro-pyran-2-yloxy)-phenyl]-acryloyl}-phenyl)-propenone | 1027079-11-3

中文名称
——
中文别名
——
英文名称
(E)-3-[4-(Tetrahydro-pyran-2-yloxy)-phenyl]-1-(3-{(E)-3-[4-(tetrahydro-pyran-2-yloxy)-phenyl]-acryloyl}-phenyl)-propenone
英文别名
(E)-3-[4-(oxan-2-yloxy)phenyl]-1-[3-[(E)-3-[4-(oxan-2-yloxy)phenyl]prop-2-enoyl]phenyl]prop-2-en-1-one
(E)-3-[4-(Tetrahydro-pyran-2-yloxy)-phenyl]-1-(3-{(E)-3-[4-(tetrahydro-pyran-2-yloxy)-phenyl]-acryloyl}-phenyl)-propenone化学式
CAS
1027079-11-3
化学式
C34H34O6
mdl
——
分子量
538.64
InChiKey
IBBHWXAQKZPFDB-OZNQKUEASA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    7.1
  • 重原子数:
    40
  • 可旋转键数:
    10
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.29
  • 拓扑面积:
    71.1
  • 氢给体数:
    0
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (E)-3-[4-(Tetrahydro-pyran-2-yloxy)-phenyl]-1-(3-{(E)-3-[4-(tetrahydro-pyran-2-yloxy)-phenyl]-acryloyl}-phenyl)-propenone对甲苯磺酸 作用下, 以 甲醇 为溶剂, 反应 15.0h, 生成 (2E,2'E)-1,1'-(1,3-phenylene)bis(3-(4-hydroxyphenyl)prop-2-en-1-one)
    参考文献:
    名称:
    Geometrically and Conformationally Restrained Cinnamoyl Compounds as Inhibitors of HIV-1 Integrase:  Synthesis, Biological Evaluation, and Molecular Modeling
    摘要:
    Various cinnammoyl-based structures were synthesized and tested in enzyme assays as inhibitors of the HIV-1 integrase (IN). The majority of compounds were designed as geometrically or conformationally constrained analogues of caffeic acid phenethyl ester (CAPE) and were characterized by a syn disposition of the carbonyl group with respect to the vinylic double bond. Since the cinnamoyl moiety present in flavones such as quercetin (inactive on HIV-1-infected cells) is frozen in an anti arrangement, it was hoped that fixing our compounds in a syn disposition could favor anti-HIV-1 activity in cell-based assays. Geometrical and conformational properties of the designed compounds were taken into account through analysis of X-ray structures available from the Cambridge Structural Database. The polyhydroxylated analogues were prepared by reacting 3,4-bis(tetrahydropyran-2-yloxy)benzaldehyde with various compounds having active methylene groups such as 2-propanone, cyclopentanone, cyclohexanone, 1,3-diacetylbenzene, 2,4-dihydroxyacetophenone, 2,3-dihydro-1-indanone, 2,3-dihydro-1,3-indandione, and others. While active against both 3'-processing and strand-transfer reactions, the new compounds, curcumin included, failed to inhibit the HIV-1 multiplication in acutely infected MT-4 cells. Nevertheless, they specifically inhibited the enzymatic reactions associated with IN, being totally inactive against other viral (HIV-1 reverse transcriptase) and cellular (RNA polymerase II) nucleic acid-processing enzymes. On the other hand, title compounds were endowed with remarkable antiproliferative activity, whose potency correlated neither with the presence of catechols (possible source of reactive quinones) nor with inhibition of topoisomerases. The SARs developed for our compounds led to novel findings concerning the molecular determinants of IN inhibitory activity within the class of cinnamoyl-based structures. We hypothesize that these compounds bind to IN featuring the cinnamoyl residue C=C-C=O in a syn disposition, differently from flavone derivatives characterized by an anti arrangement about the same fragment. Certain inhibitors, lacking one of the two pharmacophoric catechol hydroxyls, retain moderate potency thanks to nonpharmacophoric fragments (i.e., a m-methoxy group in curcumin) which favorably interact with an "accessory" region of IN. This region is supposed to be located adjacent to the binding site accommodating the pharmacophoric dihydroxycinnamoyl moiety. Disruption of coplanarity in the inhibitor structure abolishes activity owing to poor shape complementarity with the target or an exceedingly high strain energy of the coplanar conformation.
    DOI:
    10.1021/jm9707232
  • 作为产物:
    参考文献:
    名称:
    Geometrically and Conformationally Restrained Cinnamoyl Compounds as Inhibitors of HIV-1 Integrase:  Synthesis, Biological Evaluation, and Molecular Modeling
    摘要:
    Various cinnammoyl-based structures were synthesized and tested in enzyme assays as inhibitors of the HIV-1 integrase (IN). The majority of compounds were designed as geometrically or conformationally constrained analogues of caffeic acid phenethyl ester (CAPE) and were characterized by a syn disposition of the carbonyl group with respect to the vinylic double bond. Since the cinnamoyl moiety present in flavones such as quercetin (inactive on HIV-1-infected cells) is frozen in an anti arrangement, it was hoped that fixing our compounds in a syn disposition could favor anti-HIV-1 activity in cell-based assays. Geometrical and conformational properties of the designed compounds were taken into account through analysis of X-ray structures available from the Cambridge Structural Database. The polyhydroxylated analogues were prepared by reacting 3,4-bis(tetrahydropyran-2-yloxy)benzaldehyde with various compounds having active methylene groups such as 2-propanone, cyclopentanone, cyclohexanone, 1,3-diacetylbenzene, 2,4-dihydroxyacetophenone, 2,3-dihydro-1-indanone, 2,3-dihydro-1,3-indandione, and others. While active against both 3'-processing and strand-transfer reactions, the new compounds, curcumin included, failed to inhibit the HIV-1 multiplication in acutely infected MT-4 cells. Nevertheless, they specifically inhibited the enzymatic reactions associated with IN, being totally inactive against other viral (HIV-1 reverse transcriptase) and cellular (RNA polymerase II) nucleic acid-processing enzymes. On the other hand, title compounds were endowed with remarkable antiproliferative activity, whose potency correlated neither with the presence of catechols (possible source of reactive quinones) nor with inhibition of topoisomerases. The SARs developed for our compounds led to novel findings concerning the molecular determinants of IN inhibitory activity within the class of cinnamoyl-based structures. We hypothesize that these compounds bind to IN featuring the cinnamoyl residue C=C-C=O in a syn disposition, differently from flavone derivatives characterized by an anti arrangement about the same fragment. Certain inhibitors, lacking one of the two pharmacophoric catechol hydroxyls, retain moderate potency thanks to nonpharmacophoric fragments (i.e., a m-methoxy group in curcumin) which favorably interact with an "accessory" region of IN. This region is supposed to be located adjacent to the binding site accommodating the pharmacophoric dihydroxycinnamoyl moiety. Disruption of coplanarity in the inhibitor structure abolishes activity owing to poor shape complementarity with the target or an exceedingly high strain energy of the coplanar conformation.
    DOI:
    10.1021/jm9707232
点击查看最新优质反应信息

同类化合物

(2Z)-1,3-二苯基-2-丙烯-1-酮,2-丙烯-1-酮,1,3-二苯基-,(2Z)- 龙血素D 龙血素A 龙血素 B 黄色当归醇F 黄色当归醇B 黄腐醇; 黄腐酚 黄腐醇 D; 黄腐酚 D 黄腐酚B 黄腐酚 黄腐酚 黄卡瓦胡椒素 C 高紫柳查尔酮 阿普非农 阿司巴汀 阿伏苯宗 金鸡菊查耳酮 邻肉桂酰苯甲酸 达泊西汀杂质25 豆蔻明 补骨脂色烯查耳酮 补骨脂查耳酮 补骨脂呋喃查耳酮 补骨脂乙素 蜡菊亭; 4,2',4'-三羟基-6'-甲氧基查耳酮 苯酚,4-[3-(2-羟基苯基)-1-苯基丙基]-2-(3-苯基丙基)- 苯磺酰胺,N-[4-[3-(3-羟基苯基)-1-羰基-2-丙烯基]苯基]- 苯磺酰胺,N-[3-[3-(4-羟基-3-甲氧苯基)-1-羰基-2-丙烯基]苯基]- 苯磺酰胺,4-甲氧基-N,N-二甲基-2-(3-羰基-3-苯基-1-丙烯基)-,(E)- 苯磺酰氯化,4,5-二甲氧基-2-(3-羰基-3-苯基-1-丙烯基)-,(E)- 苯磺酰氯,4-甲氧基-3-(3-羰基-3-苯基-1-丙烯基)-,(E)- 苯甲醇,4-甲氧基-a-[2-(4-甲氧苯基)乙烯基]- 苯甲酸-[4-(3-氧代-3-苯基-丙烯基)-苯胺] 苯甲酸,3-[3-(4-溴苯基)-1-羰基-2-丙烯基]-4-羟基- 苯甲酰(2-羟基苯酰)甲烷 苯甲腈,4-(1-羟基-3-羰基-3-苯基丙基)- 苯基[2-(1-萘基)乙烯基]甲酮 苯基-(三苯基-丙-2-炔基)-醚 苯基-(2-苯基-2,3-二氢-苯并噻唑-2-基)-甲酮 苯亚甲基苯乙酮 苯乙酰腈,a-(1-氨基-2-苯基亚乙基)- 苯丙酸,a-苯甲酰-b-羰基-,苯基(苯基亚甲基)酰肼 苯,1-(2,2-二甲基-3-苯基丙基)-2-甲基- 苏木查耳酮 苄桂哌酯 苄基(4-氯-2-(3-氧代-1,3-二苯基丙基)苯基)氨基甲酸酯 芦荟提取物 腈苯唑 胀果甘草宁C 聚磷酸根皮酚