Mefloquine is heavily metabolized in the liver by the CYP3A4 enzyme. Two metabolites have been identified; the main metabolite, 2,8-bis-trifluoromethyl-4-quinoline carboxylic acid, which inactive against plasmodium falciparum. The second metabolite, an alcohol, is found in small quantities.
来源:DrugBank
代谢
生物转化:肝脏(部分);主要代谢为羧酸代谢物。
Biotransformation: Hepatic (partial); metabolized primarily to the carboxylic acid metabolite.
来源:Hazardous Substances Data Bank (HSDB)
代谢
Mefloquine is extensively metabolized in the liver by the cytochrome P450 system. In vitro and in vivo studies strongly suggested that CYP3A4 is the major isoform involved. Two metabolites of mefloquine have been identified in humans. The main metabolite, 2,8-bis-trifluoromethyl-4-quinoline carboxylic acid, is inactive in Plasmodium falciparum. In a study in healthy volunteers, the carboxylic acid metabolite appeared in plasma 2 to 4 hours after a single oral dose. Maximum plasma concentrations of the metabolite, which were about 50% higher than those of mefloquine, were reached after 2 weeks. Thereafter, plasma levels of the main metabolite and mefloquine declined at a similar rate. The area under the plasma concentration-time curve (AUC) of the main metabolite was 3 to 5 times larger than that of the parent drug. The other metabolite, an alcohol, was present in minute quantities only.
美氟奎在肝脏中通过细胞色素P450系统广泛代谢。体外和体内研究表明,CYP3A4是主要的参与同型物。在人类中已经识别出两种美氟奎的代谢物。主要代谢物,2,8-双三氟甲基-4-喹啉羧酸,在恶性疟原虫中是无效的。在一项健康志愿者的研究中,羧酸代谢物在单次口服剂量后2到4小时出现在血浆中。代谢物的最大血浆浓度,比美氟奎高出约50%,在2周后达到。此后,主要代谢物和美氟奎的血浆水平以相似的速度下降。主要代谢物的血浆浓度-时间曲线下面积(AUC)是母药的3到5倍。另一种代谢物,一种醇,仅以极少量存在。
Mefloquine is extensively metabolized in the liver by the cytochrome P450 system. In vitro and in vivo studies strongly suggested that CYP3A4 is the major isoform involved. Two metabolites of mefloquine have been identified in humans. The main metabolite, 2,8-bis-trifluoromethyl-4-quinoline carboxylic acid, is inactive in Plasmodium falciparum. In a study in healthy volunteers, the carboxylic acid metabolite appeared in plasma 2 to 4 hours after a single oral dose. Maximum plasma concentrations of the metabolite, which were about 50% higher than those of mefloquine, were reached after 2 weeks. Thereafter, plasma levels of the main metabolite and mefloquine declined at a similar rate. The area under the plasma concentration-time curve (AUC) of the main metabolite was 3 to 5 times larger than that of the parent drug. The other metabolite, an alcohol, was present in minute quantities only.
IDENTIFICATION AND USE: Mefloquine is a white or slightly yellow crystalline powder that is formulated into tablets. Mefloquine is an antimalarial agent which acts as a blood schizonticide. It is used for the prevention and treatment of malaria caused by strains of Plasmodium falciparum or P. vivax. HUMAN EXPOSURE AND TOXICITY: Overdosage of mefloquine produces manifestations that are similar to the adverse reactions reported with the drug. Vertigo, hallucinations, dizziness, nausea, hypotension, tachycardia, and seizures occurred in 2 patients who ingested an overdosage of mefloquine (up to 5250 mg over 5 days). Since seizures may also occur at therapeutic doses, mefloquine is contraindicated in patients with a history of seizures. Mefloquine has also been associated with neuropsychiatric manifestations: anxiety, paranoia, depression, hallucinations and psychotic behavior. These manifestations may continue long after mefloquine has been discontinued. These neuropsychiatric effects have been reported both after overdose and at therapeutic doses. To minimize the chance of these adverse effects, use of mefloquine for prophylaxis is contraindicated in patients with active depression, a recent history of depression, generalized anxiety disorder, psychosis, schizophrenia or other major psychiatric disorders. There is also evidence that the use of halofantrine during mefloqune therapy and within 15 weeks of the last dose of mefloquine increases the risk of a potential fatal prolongation of the corrected QT interval (QTc). This risk may also be increased following co-administration with ketoconazole. Clinically significant QTc interval prolongation has not been reported with mefloquine monotherapy. Several studies in pregnant women have shown no increase in the risk of teratogenic effects or adverse pregnancy outcomes following mefloquine treatment or prophylaxis during pregnancy. The WHO concluded however, that treatment with mefloquine should be undertaken cautiously during the first 12-14 weeks of gestation. ANIMAL STUDIES: While two year studies in mice and rats failed to show an increase in tumors, mefloquine did produce toxic effects. In one such study, rats were administered mefloquine in the diet at 0, 5, 12.5 or 30 mg/kg/day for 2 years. In the high dose group the weight gain of both sexes was significantly depressed and the incidence of spontaneous death was increased. Males had decreased testicle size and paralysis of hind limbs, while females showed increased vaginal hemorrhage, cystic ovaries and distended uteri filled with fluid. Elevated liver enzymes and blood urea nitrogen levels occurred for both sexes. At study completion, both sexes showed lesions in eye, lung, kidney, reproductive organs, skeletal muscle, spleen and lymph node. Retinal degeneration, opacity of the lens and/or retinal edema occurred at both the mid and high dose group. (Severity was greater in females). Mild lesions of reproductive organs and bile duct hyperplasia were seen in the mid dose group. Males had lesions in the epididymis and prostate; epithelial vacuolization of epididymis, foamy macrophages in lungs and skeletal muscle degeneration were observed in both sexes of the low dose group. The potential for mefloquine to cause neurological effects were investigated in 7-week-old female rats given a single oral dose of the drug. Potential mefloquine-induced neurological effects were monitored using a standard functional observational battery, automated open field tests, automated spontaneous activity monitoring, a beam traverse task, and histopathology. Mefloquine induced dose-related changes in endpoints associated with spontaneous activity and impairment of motor function and caused degeneration of specific brain stem nuclei (nucleus gracilis). Increased spontaneous motor activity was observed only during the rats' normal sleeping phase, suggesting a correlate to mefloquine-induced sleep disorders. Mefloquine was also shown to be teratogenic in mice, rats and rabbits. In one study, rats were administered mefloquine at doses up to 100 mg/kg/day by intragastric intubation. In the high dose group, rats grew slower and consumed less feed than controls. Fetuses had reduced body weight, reduced crown-rump length, increased incidence of externally visible soft tissue and skeletal defects; domes craniums occurred at a high rate, high incidence of hydrocephalus; malformed interparietals, incompletely ossified supra occipitals, and incompletely ossified skull bones were also observed. In a similar study in the mouse, mefloquine at doses of 100 and 200 mg/kg/day resulted in decreased body weight and a high incidence of cleft palate in fetuses. Mefloquine was also shown to impair fertility in both male and female rats. Mefloquine was not found to be mutagenic in the following tests: Ames Test, Fluctuation Test, Host (Mouse) Mediated Assay, Micronucleus Test, Induction of Point Mutations, Yeast Treat and Plate Test.
Chronic therapy with mefloquine is associated with asymptomatic, transient serum enzyme elevations in up to 18% of patients. These elevations are usually mild and resolve without dose modifications. Despite widespread use, mefloquine has rarely been linked to clinically apparent acute liver injury and too few reports are available to characterize the clinical features of such injury. Instances of acute hepatocellular injury as well as cholestatic hepatitis have been linked to use of mefloquine. Allergic manifestations (rash, fever, eosinophilia) and autoantibody formation are rare.
Mefloquine is readily absorbed from the gastrointestinal tract; food significantly increases absorption and increases bioavailability by 40%. The bioavailability of tablets compared with the oral solution preparation of mefloquine is over 85%. Cmax is achieved in 6 to 24 hours in healthy volunteers after a single dose. Average blood concentrations range between 50 to 110 ng/ml/mg/kg. A weekly dose of 250 mg leads to steady-state plasma concentrations of 1000 to 2000 μg/L, after 7 to 10 weeks of administration.
来源:DrugBank
吸收、分配和排泄
消除途径
Mefloquine is believed to be excreted in the bile and feces. In healthy volunteers who have achieved steady-state concentrations of mefloquine, the unchanged drug was excreted at 9% of the ingested dose, and excretion of its carboxylic metabolite under was measured at 4% of the ingested dose. Concentrations of other metabolites could not be determined.
美氟奎被认为是通过胆汁和粪便排出的。在达到稳态血药浓度的健康志愿者中,未改变的药物占摄入剂量的9%,其羧酸代谢物的排出量测量为摄入剂量的4%。其他代谢物的浓度无法确定。
Mefloquine is believed to be excreted in the bile and feces. In healthy volunteers who have achieved steady-state concentrations of mefloquine, the unchanged drug was excreted at 9% of the ingested dose, and excretion of its carboxylic metabolite under was measured at 4% of the ingested dose. Concentrations of other metabolites could not be determined.
The apparent volume of distribution is in healthy adults is about 20 L/kg with wide tissue distribution. Various estimates of the total apparent volume of distribution range from 13.3 to 40.9L/kg. Mefloquine can accumulate in erythrocytes that have been infected with malaria parasites.
The systemic clearance of mefloquine ranges from 0.022 to 0.073 L/h/kg, with an increased clearance during pregnancy. Prescribing information mentions a clearance rate of 30 mL/min.
Mefloquine is reasonably well absorbed from the gastrointestinal tract but there is marked interindividual variation in the time required to achieve peak plasma concentrations. ... Mefloquine undergoes enterohepatic recycling. It is approximately 98% bound to plasma proteins and is widely distributed throughout the body. The pharmacokinetics of mefloquine may be altered by malaria infection with reduced absorption and accelerated clearance. ... Mefloquine is excreted in small amounts in breast milk. It has a long elimination half-life of around 21 days, which is shortened in malaria to about 14 days, possibly because of interrupted enterohepatic cycling. Mefloquine is metabolized in the liver and excreted mainly in the bile and feces. Its pharmacokinetics show enantioselectivity after administration of the racemic mixture, with higher peak plasma concentrations and area under the curve values, and lower volume of distribution and total clearance of the SR enantiomer than its RS antipode.
Quinolone-based compounds, formulations, and uses thereof
申请人:Manetsch Roman
公开号:US10000452B1
公开(公告)日:2018-06-19
Provided herein are quinolone-based compounds that can be used for treatment and/or prevention of malaria and formulations thereof. Also provided herein are methods of treating and/or preventing malaria in a subject by administering a quinolone-based compound or formulation thereof provided herein.
The present invention relates to substituted tricyclic triazole compounds and compositions comprising substituted tricyclic triazole compounds. The invention further relates to methods of inhibiting the activity of Hsp90 in a subject in need thereof and methods for preventing or treating hyperproliferative disorders, such as cancer, in a subject in need thereof comprising administering to the subject a compound of the invention, or a composition comprising such a compound.
Amino-substituted heterocycles, compositions thereof, and methods of treatment therewith
申请人:D'Sidocky Neil R.
公开号:US20080242694A1
公开(公告)日:2008-10-02
Provided herein are Heterocyclic Compounds having the following structure:
wherein R
1
, R
2
, X, Y and Z are as defined herein, compositions comprising an effective amount of a Heterocyclic Compound and methods for treating or preventing cancer, inflammatory conditions, immunological conditions, metabolic conditions and conditions treatable or preventable by inhibition of a kinase pathway comprising administering an effective amount of a Heterocyclic Compound to a patient in need thereof.
[EN] HETEROCYCLIC AMIDES USEFUL AS PROTEIN MODULATORS<br/>[FR] AMIDES HÉTÉROCYCLIQUES UTILES EN TANT QUE MODULATEURS DE PROTÉINE
申请人:GLAXOSMITHKLINE IP DEV LTD
公开号:WO2017175147A1
公开(公告)日:2017-10-12
Disclosed are compounds having the formula (I-N), wherein q, r, s, A, B, C, RA1, RA2, RB1, RB2, RC1, RC2, R3, R4, R5, R6, R14, R15, R16, and R17, are as defined herein, or a tautomer thereof, or a salt, particularly a pharmaceutically acceptable salt, thereof.
[EN] MODULATORS OF STIMULATOR OF INTERFERON GENES (STING) USEFUL IN TREATING HIV<br/>[FR] MODULATEURS DE STIMULATEUR DES GÈNES (STING) D'INTERFÉRON UTILES DANS LE TRAITEMENT DU VIH
申请人:GLAXOSMITHKLINE IP DEV LTD
公开号:WO2019069269A1
公开(公告)日:2019-04-11
Disclosed are compounds having the formula: (I-N) wherein q, r, s, A, B, C, RA1, RA2, RB1, RB2, RC1, RC2, R3, R4, R5, R6, R14, R15, R16, and R17, are as defined herein, or a tautomer thereof, or a salt, particularly a pharmaceutically acceptable salt, thereof, along with combinations thereof, all of which are useful in HIV therapies.