摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(3R,5S,E)-7-(2-cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl)-3,5-dihydroxyhept-6-enoate | 147526-32-7

中文名称
——
中文别名
——
英文名称
(3R,5S,E)-7-(2-cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl)-3,5-dihydroxyhept-6-enoate
英文别名
(E,3R,5S)-7-[2-cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl]-3,5-dihydroxyhept-6-enoate
(3R,5S,E)-7-(2-cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl)-3,5-dihydroxyhept-6-enoate化学式
CAS
147526-32-7;147511-69-1
化学式
C25H23FNO4-
mdl
——
分子量
420.5
InChiKey
VGYFMXBACGZSIL-MCBHFWOFSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    182 - 185°C
  • 沸点:
    692.0±55.0 °C(Predicted)
  • 密度:
    1.352±0.06 g/cm3(Predicted)
  • 溶解度:
    可溶于氯仿(少许)、甲醇(少许)
  • 蒸汽压力:
    2.32X10-17 mm Hg at 25 °C (est)
  • 解离常数:
    pKa = 4.3 (carboxy) (est)

计算性质

  • 辛醇/水分配系数(LogP):
    4.2
  • 重原子数:
    31
  • 可旋转键数:
    7
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.28
  • 拓扑面积:
    93.5
  • 氢给体数:
    2
  • 氢受体数:
    6

ADMET

代谢
匹伐他汀对大鼠肝脏微粒体药物代谢的影响已经进行了研究,并且测量了多种药物代谢酶的活性。与对照相比,在连续7天以1-10 mg/kg/天的剂量给予匹伐他汀后,未发现药物代谢酶(苯胺羟基酶、氨基比林N-脱甲基酶、7-乙氧基香豆素O-脱乙基酶和UDP-葡萄糖醛酸转移酶)的诱导。基于多种不同的体外方法,可以得出结论,CYP2C9是负责匹伐他汀代谢的酶,并且在肾脏和肠道微粒体中没有发现代谢物。CYP2C9的多态性与匹伐他汀的代谢无关。在匹伐他汀存在下,未检测到对托烷咪唑4-羟基化(CYP2C9)和睾酮6β-羟基化(CYP3A4)的CYP介导代谢的抑制效应。结果表明,匹伐他汀不会影响药物代谢系统。
Pitavastatin has been studied for its effects on hepatic microsomal drug metabolism in rats, and the activities of several drug-metabolizing enzymes have been measured. No induction of the drug metabolizing enzymes (aniline hydroxylase, aminopyrine N-demethylase, 7-ethoxycoumarin O-deethylase and UDP-glucuronic acid transferase) was found in the pitavastatin group compared to the control after the multiple administrations of pitavastatin at the dosage of 1-10 mg/kg per day for 7 days. Based on several different in vitro approaches, it is concluded that CYP2C9 is the enzyme responsible for the metabolism of pitavastatin and no metabolite is present in renal and intestinal microsomes. The CYP2C9 polymorphism was not involved in the pitavastatin metabolism. No inhibitory effect in CYP-mediated metabolism was detected on the tolbutamide 4-hydroxylation (CYP2C9) and testosterone 6 beta-hydroxylation (CYP3A4) in the presence of pitavastatin. The results suggested that pitavastatin did not affect the drug-metabolizing systems.
来源:Hazardous Substances Data Bank (HSDB)
代谢
匹伐他汀通过CYP2C9进行少量代谢,在较小程度上也通过CYP2C8代谢。人类血浆中的主要代谢物是乳糖,它是通过尿苷5'-二磷酸(UDP)葡萄糖醛酸基转移酶(UGT1A3和UGT2B7)形成的酯型匹伐他汀葡萄糖醛酸苷共轭物。
Pitavastatin is marginally metabolized by CYP2C9 and to a lesser extent by CYP2C8. The major metabolite in human plasma is the lactone which is formed via an ester-type pitavastatin glucuronide conjugate by uridine 5'-diphosphate (UDP) glucuronosyltransferase (UGT1A3 and UGT2B7).
来源:Hazardous Substances Data Bank (HSDB)
代谢
为了阐明可能的物种差异,研究了大鼠、狗、兔、猴子和人类肝脏和肾脏微粒体中匹伐他汀及其内酯的体外代谢。在向肝脏微粒体中添加UDP-葡萄糖醛酸时,匹伐他汀内酯被确定为包括人类在内的几种动物中的主要代谢物。匹伐他汀及其内酯在猴肝微粒体中的代谢清除率远大于人类。匹伐他汀的3-脱羟基结构代谢物M4在猴肝微粒体中UDP-葡萄糖醛酸的存在下转化为其内酯形式,以及转化为匹伐他汀。这些结果表明,内酯化是5-羟基戊酸衍生物等药物的常见途径。由于酸形式的结构特性,它们被代谢为它们的内酯形式。UDP-葡萄糖醛酸基转移酶是负责匹伐他汀内酯化的关键酶,总体代谢与人类不同,因为猴子对匹伐他汀及其内酯进行了广泛的氧化代谢。
To elucidate any potential species differences, the in vitro metabolism of pitavastatin and its lactone was studied with hepatic and renal microsomes from rats, dogs, rabbits, monkeys and humans. With the addition of UDP-glucuronic acid to hepatic microsomes, pitavastatin lactone was identified as the main metabolite in several animals, including humans. Metabolic clearances of pitavastatin and its lactone in monkey hepatic microsome were much greater than in humans. M4, a metabolite of pitavastatin with a 3-dehydroxy structure, was converted to its lactone form in monkey hepatic microsomes in the presence of UDP-glucuronic acid as well as to pitavastatin. These results implied that lactonization is a common pathway for drugs such as 5-hydroxy pentanoic acid derivatives. The acid forms were metabolized to their lactone forms because of their structural characteristics. UDP-glucuronosyltransferase is the key enzyme responsible for the lactonization of pitavastatin, and overall metabolism is different compared with humans owing to the extensive oxidative metabolism of pitavastatin and its lactone in monkey.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 肝毒性
因为匹伐他汀是一种相对较新的药物,关于其潜在的肝毒性的信息较少。在大规模临床试验中,大约1%的患者在服用匹伐他汀治疗期间出现了轻度、无症状且通常是暂时的血清转氨酶升高,但超过正常上限3倍的情况并不常见,且在上市前临床试验中没有报告出现临床明显的肝炎病例。然而,自从匹伐他汀上市以来,赞助商收到了关于黄疸、肝炎和肝衰竭的报道,包括致命病例。仅有一篇公开发表的关于匹伐他汀导致肝损伤的报告,因此与其使用相关的肝损伤的临床特征尚未确定。另一方面,其他他汀类药物都已在与临床明显的急性肝损伤相关的病例中有牵连,这些病例通常在治疗1到6个月后出现,表现为血清酶升高胆汁淤积性或肝细胞模式。皮疹、发热和嗜酸性粒细胞增多不常见,但一些病例具有自身免疫特征,包括自身抗体、肝活检显示慢性肝炎以及对皮质类固醇治疗的临床反应。这种模式尚未被证明适用于匹伐他汀。
Because pitavastatin is a relatively new agent, less information is available on its potential hepatotoxicity. In large clinical trials, pitavastatin therapy was associated with mild, asymptomatic and usually transient serum aminotransferase elevations in approximately 1% of patients, but levels above 3 times the upper limit of normal (ULN) were infrequent and no cases of clinically apparent hepatitis were reported from the preregistration clinical trials. Since marketing of pitavastatin, however, the sponsor has received reports of jaundice, hepatitis and hepatic failure including fatal cases. There has been only a single published report of liver injury due to pitavastatin, so that the clinical signature of hepatic injury associated with its use has not been defined. On the other hand, the other statins have all been implicated in cases of clinically apparent acute liver injury that typically arise after 1 to 6 months of therapy with either a cholestatic or hepatocellular pattern of serum enzyme elevations. Rash, fever and eosinophilia are uncommon, but some cases have been marked by autoimmune features including autoantibodies, chronic hepatitis on liver biopsy and a clinical response to corticosteroid therapy. This pattern has yet to be shown to apply to pitavastatin.
来源:LiverTox
毒理性
  • 相互作用
Pitavastatin 是有机阴离子转运多肽(OATP)1B1(OATP2)的底物。抑制 OATP1B1(例如,环孢素、红霉素、利福平)的药物可以提高 Pitavastatin 的生物利用度。
Pitavastatin is a substrate of organic anionic transport polypeptide (OATP) 1B1 (OATP2). Drugs that inhibit OATP1B1 (e.g., cyclosporine, erythromycin, rifampin) can increase bioavailability of pitavastatin.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
联合使用匹伐他汀(每日一次2毫克)和依折麦布(连续7天每日10毫克)分别使匹伐他汀的峰浓度和AUC降低了2%和0.2%,而依折麦布的峰浓度和AUC分别增加了9%和2%。
Concomitant use of pitavastatin (2 mg once daily) and ezetimibe (10 mg for 7 days) decreased pitavastatin peak plasma concentration and AUC by 2 and 0.2%, respectively, and increased ezetimibe peak plasma concentration and AUC by 9 and 2%, respectively.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
红霉素显著增加了匹伐他汀的暴露量。1在同时使用匹伐他汀(第4天单次剂量4毫克)和红霉素(每天4次,每次500毫克,连续使用6天)后,匹伐他汀的峰血浆浓度和AUC分别增加了3.6倍和2.8倍;这些效果被认为是临床重要的。匹伐他汀与红霉素之间的相互作用可能是由于红霉素抑制了有机阴离子转运多肽(OATP)1B1介导的匹伐他汀的肝脏摄取。如果与红霉素同时使用,匹伐他汀的剂量不应超过每天一次1毫克。
Erythromycin substantially increases pitavastatin exposure.1 Following concomitant use of pitavastatin (4 mg as a single dose on day 4) and erythromycin (500 mg 4 times daily for 6 days), pitavastatin peak plasma concentration and AUC were increased by 3.6- and 2.8-fold, respectively; such effects were considered clinically important. The interaction between pitavastatin and erythromycin probably resulted partly from erythromycin-induced inhibition of organic anionic transport polypeptide (OATP)1B1-mediated hepatic uptake of pitavastatin. If used concomitantly with erythromycin, dosage of pitavastatin should not exceed 1 mg once daily.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
与吡拉伐他汀(4毫克/日,在第1-5天和第11-15天使用)和缓释盐酸地尔硫卓(240毫克/日,在第6-15天使用)的联合使用,分别增加了吡拉伐他汀的峰血浆浓度和AUC各15%和10%,同时分别降低了地尔硫卓的峰血浆浓度和AUC各7%和2%。
Concomitant use of pitavastatin (4 mg once daily on days 1-5 and 11-15) and extended-release diltiazem hydrochloride (240 mg on days 6-15) increased pitavastatin peak plasma concentration and AUC by 15 and 10%, respectively, and decreased diltiazem peak plasma concentration and AUC by 7 and 2%, respectively.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
/MILK/ 目前尚不清楚pitavastatin是否会在人类乳汁中排泄,但是已经显示,这类药物中的另一种药物会少量进入人类乳汁。大鼠研究表明,pitavastatin会排泄到母乳中。
/MILK/ It is not known whether pitavastatin is excreted in human milk, however, it has been shown that a small amount of another drug in this class passes into human milk. Rat studies have shown that pitavastatin is excreted into breast milk.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
这项研究旨在了解SLCO1B1基因变异对两种OATP1B1底物——普伐他汀和匹伐他汀的处置及其转运活性的影响机制。SLCO1B1编码OATP1B1(有机阴离子转运多肽)转运蛋白。实验测量了在过表达SLCO1B1*1a和SLCO1B1*15的卵母细胞中普伐他汀、匹伐他汀和氟伐他汀的摄取情况,以比较体外转运活性的变化。在11名健康志愿者中,给SLCO1B1*1a/*1a和SLCO1B1*15/*15纯合子基因型的参与者分别服用40毫克普伐他汀或4毫克匹伐他汀后,比较了普伐他汀和匹伐他汀的药代动力学参数。与SLCO1B1*1a相比,SLCO1B1*15过表达的卵母细胞中普伐他汀和匹伐他汀的摄取量减少,但氟伐他汀没有变化。匹伐他汀在SLCO1B1*15与SLCO1B1*1a之间的体外内在清除率(Clint)的倍数变化大于普伐他汀(P<0.0001)。匹伐他汀的清除率(Cl/F)在SLCO1B1*15/*15参与者中降低的程度比普伐他汀更大(P<0.01),与体外研究一致。因此,这些非代谢底物的Cmax和血浆浓度-时间曲线下面积由SLCO1B1*15变异增加。然而,与SLCO1B1*1a相比,SLCO1B1*15变异对匹伐他汀转运活性的更大降低与SLCO1B1基因多态性对匹伐他汀药代动力学的更大影响有关。这项研究表明,SLCO1B1*15变异的底物依赖性可能会调节SLCO1B1多态性对普伐他汀和匹伐他汀处置的影响。
This study was addressed to understand the underlying mechanism of the substrate-dependent effect of genetic variation in SLCO1B1, which encodes OATP1B1 (organic anion transporting polypeptide) transporter, on the disposition of two OATP1B1 substrates, pravastatin and pitavastatin, in relation to their transport activities. The uptake of pravastatin, pitavastatin, and fluvastatin was measured in oocytes overexpressing SLCO1B1*1a and SLCO1B1*15 to compare the alterations of in-vitro transporting activity. After 40-mg pravastatin or 4-mg pitavastatin was administered to 11 healthy volunteers with homozygous genotypes of SLCO1B1*1a/*1a and SLCO1B1*15/*15, the pharmacokinetic parameters of pravastatin and pitavastatin were compared among participants with SLCO1B1*1a/*1a and SLCO1B1*15/*15 genotypes. The uptake of pravastatin and pitavastatin in SLCO1B1*15 overexpressing oocytes was decreased compared with that in SLCO1B1*15, but no change occurred with fluvastatin. The fold change of in-vitro intrinsic clearance (Clint) for pitavastatin in SLCO1B1*15 compared with SLCO1B1*1a was larger than that of pravastatin (P<0.0001). The clearance (Cl/F) of pitavastatin was decreased to a greater degree in participant with SLCO1B1*15/*15 compared with that of pravastatin in vivo (P<0.01), consistent with in-vitro study. As a result, Cmax and area under the plasma concentration-time curve of these nonmetabolized substrates were increased by SLCO1B1*15 variant. The greater decrease in the transport activity for pitavastatin in SLCO1B1*15 variant compared with SLCO1B1*1a was, however, associated with the greater effect on the pharmacokinetics of pitavastatin compared with pravastatin in relation to the SLCO1B1 genetic polymorphism. This study suggests that substrate dependency in the consequences of the SLCO1B1*15 variant could modulate the effect of SLCO1B1 polymorphism on the disposition of pitavastatin and pravastatin.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在一项开放标签、随机、三周期交叉设计的研究中,对12名中国志愿者单次给药1毫克、2毫克和4毫克匹伐他汀钙进行了药代动力学研究。通过高效液相色谱法(HPLC)测定了匹伐他汀酸和匹伐他汀内酯的血浆浓度。通过TaqMan(MGB)基因分型检测法确定了ABCB1、ABCG2、SLCO1B1、CYP2C9和CYP3A5的单核苷酸多态性(SNPs)。分析了上述SNPs与匹伐他汀酸和内酯形式的剂量归一化(基于1毫克)的血浆浓度-时间曲线下面积至无穷大[AUC(0-infinity)]和峰浓度(Cmax)值之间的关系。匹伐他汀表现出线性药代动力学和较大的个体间变异性。与CYP2C9*1/*1携带者相比,CYP2C9*1/*3携带者的匹伐他汀酸AUC(0-infinity)和Cmax以及匹伐他汀内酯的AUC(0-infinity)更高(P<0.05)。关于ABCB1 G2677T/A,非G携带者的匹伐他汀酸Cmax和AUC(0-infinity)以及匹伐他汀内酯的Cmax比GT、GA或GG基因型携带者更高(P<0.05)。观察到了SLCO1B1 c.521T>C和g.11187G>A对酸和内酯形式药代动力学的基因剂量效应。与非SLCO1B1*17携带者相比,SLCO1B1*17携带者的酸和内酯形式的Cmax和AUC(0-infinity)更高(P<0.05)。对于内酯的药代动力学,观察到显著的性别差异。女性SLCO1B1 521TT受试者的匹伐他汀内酯Cmax和AUC(0-infinity)高于男性521TT受试者,然而,在521 TC和521CC受试者中,这种性别差异消失了。匹伐他汀的药代动力学不受ABCB1 C1236T、ABCB1 C3435T、CYP3A5*3、ABCG2 c.34G>A、c.421C>A、SLCO1B1 c.388A>G、c.571T>C和c.597C>T的影响。我们得出结论,CYP2C9*3、ABCB1 G2677T/A、SLCO1B1 c.521T>C、SLCO1B1 g.11187G>A、SLCO1B1*17和性别共同导致匹伐他汀药代动力学的个体间变异性。对于接受匹伐他汀的高胆固醇血症患者,应该实行个性化医疗。
A pharmacokinetics study was conducted in 12 Chinese volunteers following a single dose of 1 mg, 2 mg and 4 mg of pitavastatin calcium in an open-label, randomized, three-period crossover design. Plasma concentrations of pitavastatin acid and pitavastatin lactone were determined by a HPLC method. Single-nucleotide polymorphisms (SNPs) in ABCB1, ABCG2, SLCO1B1, CYP2C9 and CYP3A5 were determined by TaqMan (MGB) genotyping assay. An analysis was performed on the relationship between the aforementioned SNPs and dose-normalized (based on 1 mg) area under the plasma concentration-time curve extrapolated to infinity [AUC(0-infinity)] and peak plasma concentration (Cmax) values of the acid and lactone forms of pitavastatin. Pitavastatin exhibited linear pharmacokinetics and great inter-subject variability. Compared to CYP2C9*1/*1 carriers, CYP2C9*1/*3 carriers had higher AUC(0-infinity) and Cmax of pitavastatin acid and AUC(0-infinity) of pitavastatin lactone (P<0.05). With respect to ABCB1 G2677T/A, non-G carriers had higher Cmax and AUC(0-infinity) of pitavastatin acid, and Cmax of pitavastatin lactone compared to GT, GA or GG genotype carriers (P<0.05). Gene-dose effects of SLCO1B1 c.521T> C and g.11187G > A on pharmacokinetics of the acid and lactone forms were observed. Compared to non-SLCO1B1*17 carriers, SLCO1B1*17 carriers had higher Cmax and AUC(0-infinity) of the acid and lactone forms (P<0.05). Significant sex difference was observed for pharmacokinetics of the lactone. Female SLCO1B1 521TT subjects had higher Cmax and AUC(0-infinity) of pitavastatin lactone compared to male 521TT subjects, however, such gender difference disappeared in 521 TC and 521CC subjects. Pitavastatin pharmacokinetics was not significantly affected by ABCB1 C1236T, ABCB1C3435T, CYP3A5*3, ABCG2 c.34G > A, c.421C > A, SLCO1B1 c.388A>G, c.571T>C and c.597C>T. We conclude that CYP2C9*3, ABCB1 G2677T/A, SLCO1B1 c.521T>C, SLCO1B1 g.11187G > A, SLCO1B1*17 and gender contribute to inter-subject variability in pitavastatin pharmacokinetics. Personalized medicine should be necessary for hypercholesterolemic patients receiving pitavastatin.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
匹伐他汀在人类血浆中超过99%与蛋白结合,主要与白蛋白和α1-酸性糖蛋白结合,平均分布体积大约为148升。匹伐他汀及其代谢物与血细胞的结合极小。
Pitavastatin is more than 99% protein bound in human plasma, mainly to albumin and alpha 1-acid glycoprotein, and the mean volume of distribution is approximately 148 L. Association of pitavastatin and/or its metabolites with the blood cells is minimal.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 安全说明:
    S24/25
  • 海关编码:
    2933499090
  • 危险性防范说明:
    P261,P305+P351+P338
  • 危险性描述:
    H302,H315,H319,H335

SDS

SDS:49e2f8c5c04e23cca6d86d823617e57b
查看

制备方法与用途

抗高血脂症药物——匹伐他汀 简介

匹伐他汀(pitavastatin,NK—104)是由日本Nissan Chemical公司研发的一种抗高血脂症药物。它不仅是一种新型、高效、安全且成本效益比高的剂效依赖性他汀类降脂新药,也是一种强效的3-羟-3-甲基戊二酰辅酶A(HMG-CoA还原酶)抑制剂。匹伐他汀具有强大的降低低密度脂蛋白胆固醇(LDL-C)、总胆固醇(TC)的作用,并且存在显著的基因多态性、生物利用度高、半衰期长,仅少量经过CYP2C9代谢。

上市与适应症

1999年11月,匹伐他汀在日本注册上市。随后,分别于2003年在日本、2009年中国和2010年在美国获得批准上市,用于治疗原发性高脂血症、家族性高胆固醇血症及混合型血脂紊乱。

药理作用 抑制HMG-CoA还原酶

匹伐他汀对HMG-CoA酶的抑制作用极强,IC50值为6.8 nmol/L。它的作用强度是辛伐他汀的24倍,氟伐他汀的68倍。

阻碍胆固醇合成

匹伐他汀高效抑制人肝细胞HepG2生成胆固醇的过程,IC50值为5.8 nmol/L。在胆固醇生成过程中各酶的抑制作用非常弱,匹伐他汀的作用强度是辛伐他汀的29倍、阿伐他汀的57倍。

增大LDL受体密度

在1μmol/L的超低浓度下,匹伐他汀能诱导LDL受体mRNA的合成,并增加其数量。从而增强LDL受体密度,促进LDL清除,降低血浆LDL-胆固醇和总甘油三酯水平。

药代动力学

口服匹伐他汀后主要在十二指肠和大肠吸收,血浆蛋白结合率超过96%。药物选择性分布在肝脏,在其他组织中的浓度较低或相同。在肝脏、肾脏、肺、心脏及肌肉中代谢,经粪便排出体外。

临床应用
  • 降脂作用:降低血液低密度脂蛋白和甘油三酯水平。
  • 抗动脉粥样硬化作用
  • 促进血管新生作用
  • 抗炎症作用
  • 激活体内高分子脂联素
  • 抗氧化应激
不良反应
  • 常见不良反应包括腹痛、便秘等胃肠道不适,偶见血清GOP、GPT及cK上升。这些症状常见于HMG-CoA还原酶抑制剂。
  • 最严重的不良反应为横纹肌溶解和肌病,发生率为1/1000左右。
  • 其他不良反应包括肌酸激酶(CK)升高、乳酸脱氢酶、谷丙转氨酶(ALT)、谷草转氨酶(AST)、γ-谷氨酰胺转肽酶(γ-GTP)、乳酸脱氢酶(LDH)升高,肌痛、胃肠道症状、头痛、头晕、药疹、抑郁及倦怠感等。
发展前景

匹伐他汀因其用量小而疗效显著被誉为“超级他汀”,被列为全球18种销售潜力最大的新药之一。预计到2008年销售额将超过30亿美元,被称为第三代他汀中的“重磅炸弹”。发展前景广阔。