Cobalt(II)-Catalyzed Conversion of Allylic Alcohols/Acetates to Allylic Amides in the Presence of Nitriles
摘要:
Various secondary allylic alcohols or their acetates and tertiary allylic alcohols can be converted to the corresponding transposed allylic amides in the presence of a catalytic quantity of cobalt(II) chloride and acetic anhydride in acetonitrile. Tertiary alcohols undergo complete rearrangement whereas secondary ones afford a mixture of regioisomers. Moderate yields of amides are also obtained by reacting acrylonitrile with secondary alcohols in 1,2-dichloroethane. The presence of acetic anhydride or acetic acid is crucial to the formation of amides as the absence of the former affords no amides and the allylic alcohols are mainly recovered as regioisomeric mixtures. The regioselectivity during amide formation can be enhanced by using cobalt complexes 14-16 in acetic acid medium. Some preliminary studies indicate that these reactions are proceeding via an pi-allyl complex or tight ion pair rather than a [3,3] sigmatropic rearrangement of acetamidate obtained in a Pinner reaction.
The Vinylogous Aldol Reaction of Unsaturated Esters and Enolizable Aldehydes Using the Novel Lewis Acid Aluminum Tris(2,6-di-2-naphthylphenoxide)
作者:Jeffrey A. Gazaille、Tarek Sammakia
DOI:10.1021/ol300738f
日期:2012.6.1
(ATNP), and its use in the vinylogous aldol reaction between methyl crotonate and enolizable aldehydes are described. ATNP is related to Yamamoto’s Lewis acid, aluminum tris(2,6-diphenylphenoxide) (ATPH), but the 2-naphthyl groups more effectively block the α-position of aldehydes, enabling the selective enolization of crotonateesters in the presence of enolizable aldehydes. Vinylogous aldol reactions
The combined use of aluminumtris(2,6-diphenylphenoxide) (ATPH) and lithium 2,2,6,6-tetramethylpiperidide (LTMP) has proven to be effective for the mixed crossed aldolcondensation between conjugated esters and various aldehydes. An example is shown in Equation (1).
Cobalt(II)-Catalyzed Conversion of Allylic Alcohols/Acetates to Allylic Amides in the Presence of Nitriles
作者:Manoj Mukhopadhyay、M. Madhava Reddy、G. C. Maikap、Javed Iqbal
DOI:10.1021/jo00114a013
日期:1995.5
Various secondary allylic alcohols or their acetates and tertiary allylic alcohols can be converted to the corresponding transposed allylic amides in the presence of a catalytic quantity of cobalt(II) chloride and acetic anhydride in acetonitrile. Tertiary alcohols undergo complete rearrangement whereas secondary ones afford a mixture of regioisomers. Moderate yields of amides are also obtained by reacting acrylonitrile with secondary alcohols in 1,2-dichloroethane. The presence of acetic anhydride or acetic acid is crucial to the formation of amides as the absence of the former affords no amides and the allylic alcohols are mainly recovered as regioisomeric mixtures. The regioselectivity during amide formation can be enhanced by using cobalt complexes 14-16 in acetic acid medium. Some preliminary studies indicate that these reactions are proceeding via an pi-allyl complex or tight ion pair rather than a [3,3] sigmatropic rearrangement of acetamidate obtained in a Pinner reaction.