摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

六甲基杜瓦苯 | 7641-77-2

中文名称
六甲基杜瓦苯
中文别名
——
英文名称
1,2,3,4,5,6-hexamethylbicyclo[2.2.0]hexa-2,5-diene
英文别名
hexamethyl dewar benzene;HMDB
六甲基杜瓦苯化学式
CAS
7641-77-2
化学式
C12H18
mdl
MFCD00001337
分子量
162.275
InChiKey
RVNQQZMIWZPGNA-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    7 °C(lit.)
  • 沸点:
    60 °C20 mm Hg(lit.)
  • 密度:
    0.803 g/mL at 25 °C(lit.)
  • 闪点:
    95 °F
  • 稳定性/保质期:
    在常温常压下保持稳定,应避免与强氧化剂接触。

计算性质

  • 辛醇/水分配系数(LogP):
    2.3
  • 重原子数:
    12
  • 可旋转键数:
    0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.666
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

安全信息

  • 危险等级:
    3.2
  • 危险类别码:
    R10
  • 危险品运输编号:
    UN 3295 3/PG 3
  • 包装等级:
    III
  • 危险类别:
    3.2
  • 储存条件:
    密封储存于阴凉、干燥的库房,远离热源、火花和火焰,避免置于易燃易爆区域。建议将物品存放在冷藏条件下,温度保持在4°C。

SDS

SDS:ce0c1e07bc38888656c1846d04b3e6f4
查看
Name: Hexamethyl dewar benzene 97% Material Safety Data Sheet
Synonym: 1,2,3,4,5,6-Hexamethylbicyclo[2.2.0]hexa-2,5-diene; 2-Butin hexamethyl-dewar-benzol; Bicyclo(2.2.0)hexa-2,5-diene, hexamethyl-; Hexamethyl-bicyclo(2.2.0)hexa-2,5-die
CAS: 7641-77-2
Section 1 - Chemical Product MSDS Name:Hexamethyl dewar benzene 97% Material Safety Data Sheet
Synonym:1,2,3,4,5,6-Hexamethylbicyclo[2.2.0]hexa-2,5-diene; 2-Butin hexamethyl-dewar-benzol; Bicyclo(2.2.0)hexa-2,5-diene, hexamethyl-; Hexamethyl-bicyclo(2.2.0)hexa-2,5-die

Section 2 - COMPOSITION, INFORMATION ON INGREDIENTS
CAS# Chemical Name content EINECS#
7641-77-2 Hexamethyl dewar benzene 97 231-576-3
Hazard Symbols: None Listed.
Risk Phrases: 10

Section 3 - HAZARDS IDENTIFICATION
EMERGENCY OVERVIEW
Flammable.Light sensitive.
Potential Health Effects
Eye:
May cause eye irritation. May cause chemical conjunctivitis and corneal damage.
Skin:
May cause irritation and dermatitis. May cause cyanosis of the extremities.
Ingestion:
May cause gastrointestinal irritation with nausea, vomiting and diarrhea. Ingestion of large amounts may cause CNS depression.
Inhalation:
Aspiration may lead to pulmonary edema. Vapors may cause dizziness or suffocation. May cause burning sensation in the chest.
Chronic:
Effects may be delayed.

Section 4 - FIRST AID MEASURES
Eyes: Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical aid immediately.
Skin:
Get medical aid. Flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes.
Ingestion:
Never give anything by mouth to an unconscious person. Get medical aid immediately. Do NOT induce vomiting. If conscious and alert, rinse mouth and drink 2-4 cupfuls of milk or water.
Inhalation:
Get medical aid immediately. Remove from exposure and move to fresh air immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Do NOT use mouth-to-mouth resuscitation.
Notes to Physician:

Section 5 - FIRE FIGHTING MEASURES
General Information:
As in any fire, wear a self-contained breathing apparatus in pressure-demand, MSHA/NIOSH (approved or equivalent), and full protective gear. Vapors may form an explosive mixture with air.
Vapors can travel to a source of ignition and flash back. During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion. Will burn if involved in a fire. Use water spray to keep fire-exposed containers cool. Containers may explode in the heat of a fire. Flammable liquid and vapor. Vapors may be heavier than air. They can spread along the ground and collect in low or confined areas.
Extinguishing Media:
Use water spray to cool fire-exposed containers. Water may be ineffective. Use agent most appropriate to extinguish fire. Do NOT use straight streams of water. In case of fire, use carbon dioxide, dry chemical powder or appropriate foam.

Section 6 - ACCIDENTAL RELEASE MEASURES
General Information: Use proper personal protective equipment as indicated in Section 8.
Spills/Leaks:
Absorb spill with inert material (e.g. vermiculite, sand or earth), then place in suitable container. Avoid runoff into storm sewers and ditches which lead to waterways. Clean up spills immediately, observing precautions in the Protective Equipment section. Remove all sources of ignition. Use a spark-proof tool. A vapor suppressing foam may be used to reduce vapors.

Section 7 - HANDLING and STORAGE
Handling:
Wash thoroughly after handling. Remove contaminated clothing and wash before reuse. Use only in a well-ventilated area. Ground and bond containers when transferring material. Use spark-proof tools and explosion proof equipment. Avoid contact with eyes, skin, and clothing. Empty containers retain product residue, (liquid and/or vapor), and can be dangerous. Keep away from heat, sparks and flame.
Avoid ingestion and inhalation. Store protected from light. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose empty containers to heat, sparks or open flames.
Storage:
Keep away from heat, sparks, and flame. Store in a cool, dry, well-ventilated area away from incompatible substances.
Refrigerator/flammables. Keep containers tightly closed. Store protected from light.

Section 8 - EXPOSURE CONTROLS, PERSONAL PROTECTION
Engineering Controls:
Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use adequate general or local explosion-proof ventilation to keep airborne levels to acceptable levels.
Exposure Limits CAS# 7641-77-2: Personal Protective Equipment Eyes: Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166.
Skin:
Wear appropriate protective gloves to prevent skin exposure.
Clothing:
Wear appropriate protective clothing to prevent skin exposure.
Respirators:
A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements or European Standard EN 149 must be followed whenever workplace conditions warrant respirator use.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

Physical State: Liquid
Color: clear yellow
Odor: none reported
pH: Not available.
Vapor Pressure: Not available.
Viscosity: Not available.
Boiling Point: 60 deg C @ 20 mmHg
Freezing/Melting Point: 0.7 - 1 deg C
Autoignition Temperature: Not applicable.
Flash Point: 35 deg C ( 95.00 deg F)
Explosion Limits, lower: Not available.
Explosion Limits, upper: Not available.
Decomposition Temperature: Not available.
Solubility in water: Not available.
Specific Gravity/Density: .8030g/cm3
Molecular Formula: C12H18
Molecular Weight: 162.27

Section 10 - STABILITY AND REACTIVITY
Chemical Stability:
Stable under normal temperatures and pressures. May decompose when exposed to light.
Conditions to Avoid:
Incompatible materials, light, ignition sources, excess heat, strong oxidants.
Incompatibilities with Other Materials:
Oxidizing agents, direct light.
Hazardous Decomposition Products:
Carbon monoxide, irritating and toxic fumes and gases, carbon dioxide.
Hazardous Polymerization: Has not been reported

Section 11 - TOXICOLOGICAL INFORMATION
RTECS#:
CAS# 7641-77-2: DT7320000 LD50/LC50:
Not available.
Carcinogenicity:
Hexamethyl dewar benzene - Not listed by ACGIH, IARC, or NTP.
Other:
See actual entry in RTECS for complete information.

Section 12 - ECOLOGICAL INFORMATION


Section 13 - DISPOSAL CONSIDERATIONS
Dispose of in a manner consistent with federal, state, and local regulations.

Section 14 - TRANSPORT INFORMATION

IATA
Shipping Name: FLAMMABLE LIQUID, N.O.S.*
Hazard Class: 3
UN Number: 1993
Packing Group: II
IMO
Shipping Name: FLAMMABLE LIQUID, N.O.S.
Hazard Class: 3.2
UN Number: 1993
Packing Group: II
RID/ADR
Shipping Name: FLAMMABLE LIQUID, N.O.S.
Hazard Class: 3
UN Number: 1993
Packing group: II

Section 15 - REGULATORY INFORMATION

European/International Regulations
European Labeling in Accordance with EC Directives
Hazard Symbols: Not available.
Risk Phrases:
R 10 Flammable.
Safety Phrases:
S 16 Keep away from sources of ignition - No
smoking.
WGK (Water Danger/Protection)
CAS# 7641-77-2: No information available.
Canada
None of the chemicals in this product are listed on the DSL/NDSL list.
CAS# 7641-77-2 is not listed on Canada's Ingredient Disclosure List.
US FEDERAL
TSCA
CAS# 7641-77-2 is not listed on the TSCA inventory.
It is for research and development use only.


SECTION 16 - ADDITIONAL INFORMATION
N/A


上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    六甲基杜瓦苯硫酸 作用下, 以 甲醇 为溶剂, 生成 1,2,3,4,5-五甲基环戊二烯
    参考文献:
    名称:
    Criegee,R.; Gruener,H., Angewandte Chemie, 1968, vol. 80, p. 447 - 448
    摘要:
    DOI:
  • 作为产物:
    描述:
    六甲基苯环己烷 为溶剂, 生成 六甲基杜瓦苯
    参考文献:
    名称:
    形成p -xylylene从p二甲苯通过从六甲双光子过程,六甲基杜瓦苯通过在193nm的单光子过程
    摘要:
    虽然研究一系列甲基取代的苯,C 6 ħ 6- Ñ(CH 3)ñ与Ñ  = 2,3,4,6,和使用193纳米的激光闪光光解气相全氟苯,我们观察到形成的p-二甲苯(苯并醌二甲烷)是由于两次光子过程而消除了两个氢原子。用内部转化形成的中间热分子解释了结果,该中间热分子最终导致了基态电子状态。在存在外来气体的情况下,观察到甲苯,二甲苯,均三甲苯和全氟苯对光产物的二次依赖性,而对丁二烯和六甲基苯则观察到线性依赖性。从六甲基苯的光解中检测到杜瓦瓶型苯。
    DOI:
    10.1016/j.jphotochem.2011.02.031
  • 作为试剂:
    描述:
    (+/-)-1,4-di(4-fluorophenyl)-2,3-dioxabicyclo[2,2,2]oct-5-ene 在 六甲基杜瓦苯 、 iron(II) bromide 作用下, 以 四氢呋喃 为溶剂, 反应 0.08h, 以64%的产率得到syn-1,2;3,4-bis(epoxy)-1,4-di(p-fluorophenyl)cyclohexane
    参考文献:
    名称:
    铁(II)促进的1,4-二芳基-2,3-二氧杂双环[2.2.2]辛-5-烯的重排:与先前推测的机理不同
    摘要:
    1,4-二芳基-2,3-二氧杂二环的反应[2.2.2]辛-5-烯类1A - Ç(1A:Ar为p -FC 6 ħ 4,1B:氩= C 6 H ^ 5,1C:氩= p -MeC 6 ħ 4)与FeBr 2,得到顺式-1,2-; 3,4-双(环氧)-1,4- diarylcyclohexanes 4A - ç和顺-3,6-二芳基-2,3- epoxycyclohexanones 5A – c为主要产品,而不是先前报道的1-芳基-3-芳基-2,3-环氧环戊烷2a – c。
    DOI:
    10.1016/s0040-4039(02)02024-5
点击查看最新优质反应信息

文献信息

  • Quantum Amplified Isomerization:  A New Concept for Polymeric Optical Materials
    作者:J. G. Gillmore、J. D. Neiser、K. A. McManus、Y. Roh、G. W. Dombrowski、T. G. Brown、J. P. Dinnocenzo、S. Farid、D. R. Robello
    DOI:10.1021/ma050348k
    日期:2005.9.1
    quantum amplified isomerization (QAI). The QAI process utilizes photoinitiated, cation radical isomerization chemistry in a polymeric medium. Two classes of materials are described:  one where the QAI reactant is molecularly doped in the polymer matrix and another where the reactant is part of a functionalized polymer. Quantum yield experiments demonstrate that the isomerization reaction can proceed by
    在称为量子放大异构化(QAI)的过程的基础上描述了新型光敏聚合物的制备和评估。QAI工艺在聚合物介质中利用了光引发的阳离子自由基异构化化学反应。描述了两类材料:一种是QAI反应物分子掺杂在聚合物基质中,另一种是反应物是功能化聚合物的一部分。量子产率实验表明,异构化反应可以通过链式工艺以中等效率进行。光化学转化实验表明,QAI反应物的高度转化是可能的。转化率和程度与聚合物的玻璃化转变温度密切相关。对于分子掺杂的聚合物,检验并排除了基于反应物的扩散或相分离来解释高转化率的假说。讨论了模型以合理化影响量子产率和光化学转化的实验因素。
  • Unusual Ring Opening of Hexamethyl Dewar Benzene in Its Reaction with Triosmium Carbonyl Cluster
    作者:Wen-Yann Yeh、Yu-Chiao Liu、Shie-Ming Peng、Gene-Hsiang Lee
    DOI:10.1021/om030281u
    日期:2003.6.1
    Os3(CO)10(NCMe)2 catalyzes the transformation of hexamethyl Dewar benzene (HMDB) to hexamethylbenzene (HMB). This catalytic reaction is in competition with ring opening of the HMDB ligand to give (μ-H)2Os3(CO)9(μ-η3-CH(C6Me5)) (1) and (μ-H)Os3(CO)9(μ3-η2-C⋮C(C4Me4Et)) (2).
    Os 3(CO)10(NCMe)2催化六甲基杜瓦苯(HMDB)向六甲基苯(HMB)的转化。该催化反应是在与HMDB的开环配体竞争,得到(μ-H)2 O的3(CO)9(μ-η 3 -CH(C 6我5))(1)和(μ-H) OS 3(CO)9(μ 3 -η 2 -C⋮ç(C 4我4 ET))(2)。
  • Mechanisms of hemin-catalyzed epoxidations: electron transfer from alkenes
    作者:Teddy G. Traylor、Andrew R. Miksztal
    DOI:10.1021/ja00243a033
    日期:1987.4
    L'hexamethyl benzene Dewar se transpose partiellement en hexamethylbenzene au cours de son epoxydation a l'aide de chlorure de (tetraphenylporphyrinato) fer(III) et d'acide chloro-3 perbenzoique. De la meme maniere, l'hexahydro-1,4,4a,5,8,8a dimethano-1,4:5,8 naphtalene se transpose en «hydrocarbure cage a oiseau» (hexacyclododecane
    L'六甲基苯杜瓦se转置partiellement en hexamethylbenzo au cours de son epoxydation a l'aide de chlorure de (tetraphenylporphyrinato) fer(III) et d'acide chloro-3 perbenzoique。De la meme maniere, l'hexahydro-1,4,4a,5,8,8a dimethano-1,4:5,8 naphtalene se transpose en «hydrocarbure gear a oiseau»(六环十二烷
  • Semiconductor-catalyzed photocycloreversion, valence isomerization and [1,3]-sigmatropic rearrangement
    作者:Keiji Okada、Kunio Hisamitsu、Yasutake Takahashi、Takaaki Hanaoka、Tsutomu Miyashi、Toshio Mukai
    DOI:10.1016/s0040-4039(01)81591-4
    日期:——
    The semiconductor-catalyzed photochemical [2+2]cycloreversion of n-methylquinolone dimer, valence isomerization of hexamethyl(Dewar)benzene, and [1,3]-sigmatropic rearrangement of 2,2-bis(4-methoxyphenyl)-1-dideuteriomethylenecyclopropane gave N-methylquinolone, hexamethylbenzene, and 2,2-bis(4- methoxyphenyl)-3,3-dideuterio-1-methylenecyclopropane, respectively.
    半导体催化的正甲基喹诺酮二聚体的光化学[2 + 2]环还原,六甲基(杜瓦)苯的价异构化以及2,2-双(4-甲氧基苯基)-1-二氘亚甲基环丙烷的[1,3]-σ重排。分别得到N-甲基喹诺酮,六甲基苯和2,2-双(4-甲氧基苯基)-3,3-二异氘-1-亚甲基环丙烷。
  • Biocatalytic Photosynthesis with Water as an Electron Donor
    作者:Jungki Ryu、Dong Heon Nam、Sahng Ha Lee、Chan Beum Park
    DOI:10.1002/chem.201403301
    日期:2014.9.15
    thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that
    有效收集无限量的太阳能并将其转化为有价值的化学物质是科学家的最终目标之一。随着人们对可持续增长和环境问题的日益关注,为开发用于生产燃料和精细化学品的人造光合作用工艺做出了许多努力,从而模仿了自然光合作用。尽管数十年来取得了研究进展,但由于整个光催化循环的动力学耦合困难,该技术仍处于起步阶段。在本文中,我们报告了一种新型的人工光合作用系统,该系统可以通过将生物催化氧化还原反应与光催化水分解整体结合来避免此类问题。3 ] 2+。根据这些结果,我们可以在辅助因子的原位光再生后,使用模型氧化还原酶(谷氨酸脱氢酶)成功地光合作用模型手性化合物(L-谷氨酸)。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
查看更多图谱数据,请前往“摩熵化学”平台
mass
cnmr
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台