Design and Synthesis of Antitumor Heck-Coupled Sclareol Analogues: Modulation of BH3 Family Members by SS-12 in Autophagy and Apoptotic Cell Death
摘要:
Sclareol, a promising anticancer labdane diterpene, was isolated from Salvia sclarea. Keeping the basic stereochemistry-rich framework of the molecule intact, a method for the synthesis of novel sclareol analogues was designed using palladium(II)-catalyzed oxidative Heck coupling reaction in order to study their structureactivity relationship. Both sclareol and its derivatives showed an interesting cytotoxicity profile, with 15-(4-fluorophenyl)sclareol (SS-12) as the most potent analogue, having IC50 = 0.082 mu M against PC-3 cells. It was found that SS-12 commonly interacts with Bcl-2 and Beclin 1 BH3 domain proteins and enhances autophagic flux by modulating autophagy-related proteins. Moreover, inhibition of autophagy by autophagy inhibitors protected against SS-12-induced apoptosis. Finally, SS-12 effectively suppressed tumor growth in vivo in Ehrlichs ascitic and solid Sarcoma-180 mouse models.
Design and Synthesis of Antitumor Heck-Coupled Sclareol Analogues: Modulation of BH3 Family Members by SS-12 in Autophagy and Apoptotic Cell Death
作者:Shakeel-u-Rehman、Bilal Rah、Shabir H. Lone、Reyaz Ur Rasool、Saleem Farooq、Debasis Nayak、Naveed Anjum Chikan、Souneek Chakraborty、Akanksha Behl、Dilip Manikaro Mondhe、Anindya Goswami、Khursheed Ahmad Bhat
DOI:10.1021/jm501942m
日期:2015.4.23
Sclareol, a promising anticancer labdane diterpene, was isolated from Salvia sclarea. Keeping the basic stereochemistry-rich framework of the molecule intact, a method for the synthesis of novel sclareol analogues was designed using palladium(II)-catalyzed oxidative Heck coupling reaction in order to study their structureactivity relationship. Both sclareol and its derivatives showed an interesting cytotoxicity profile, with 15-(4-fluorophenyl)sclareol (SS-12) as the most potent analogue, having IC50 = 0.082 mu M against PC-3 cells. It was found that SS-12 commonly interacts with Bcl-2 and Beclin 1 BH3 domain proteins and enhances autophagic flux by modulating autophagy-related proteins. Moreover, inhibition of autophagy by autophagy inhibitors protected against SS-12-induced apoptosis. Finally, SS-12 effectively suppressed tumor growth in vivo in Ehrlichs ascitic and solid Sarcoma-180 mouse models.