摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

methyl 3,4,6-tri-O-benzyl-α-D-glucopyranosyl-(1->3)-2,4,6-tri-O-benzyl-α-D-glucopyranosyl-(1->3)-2-O-benzyl-(R)-4,6-O-benzylidene-α-D-mannopyranoside | 502181-63-7

中文名称
——
中文别名
——
英文名称
methyl 3,4,6-tri-O-benzyl-α-D-glucopyranosyl-(1->3)-2,4,6-tri-O-benzyl-α-D-glucopyranosyl-(1->3)-2-O-benzyl-(R)-4,6-O-benzylidene-α-D-mannopyranoside
英文别名
methyl (3,4,6-tri-O-benzyl-α-D-glucopyranosyl)-(1-3)-(2,4,6-tri-O-benzyl-α-D-glucopyranosyl)-(1-3)-2-O-benzyl-(R)-4,6-O-benzylidene-α-D-mannopyranoside;(2R,3R,4R,5R,6R)-2-[(2R,3R,4S,5R,6R)-2-[[(2R,4aR,6S,7S,8S,8aR)-6-methoxy-2-phenyl-7-phenylmethoxy-4,4a,6,7,8,8a-hexahydropyrano[3,2-d][1,3]dioxin-8-yl]oxy]-3,5-bis(phenylmethoxy)-6-(phenylmethoxymethyl)oxan-4-yl]oxy-4,5-bis(phenylmethoxy)-6-(phenylmethoxymethyl)oxan-3-ol
methyl 3,4,6-tri-O-benzyl-α-D-glucopyranosyl-(1->3)-2,4,6-tri-O-benzyl-α-D-glucopyranosyl-(1->3)-2-O-benzyl-(R)-4,6-O-benzylidene-α-D-mannopyranoside化学式
CAS
502181-63-7
化学式
C75H80O16
mdl
——
分子量
1237.45
InChiKey
QOMQXIJZQKWYIT-QBERRZBFSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    9.8
  • 重原子数:
    91
  • 可旋转键数:
    29
  • 环数:
    12.0
  • sp3杂化的碳原子比例:
    0.36
  • 拓扑面积:
    159
  • 氢给体数:
    1
  • 氢受体数:
    16

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2-O-prop-1'-enyl-3,4,6-tri-O-benzyl-β-D-glucopyranosyl fluoride 、 methyl 3,4,6-tri-O-benzyl-α-D-glucopyranosyl-(1->3)-2,4,6-tri-O-benzyl-α-D-glucopyranosyl-(1->3)-2-O-benzyl-(R)-4,6-O-benzylidene-α-D-mannopyranoside 在 4 A molecular sieve 2,6-二叔丁基-4-甲基吡啶silver trifluoromethanesulfonate 作用下, 以 二氯甲烷 为溶剂, 以78%的产率得到methyl 3,4,6-tri-O-benzyl-2-O-(2-iodo-1-(3,4,6-tri-O-benzyl-1-deoxy-1-fluoro-β-D-glucopyranos-2-O-yl)propyl)-α-D-glucopyranosyl-(1->3)-2,4,6-tri-O-benzyl-α-D-glucopyranosyl-(1->3)-2-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside
    参考文献:
    名称:
    Allyl protecting group mediated intramolecular aglycon delivery: optimisation of mixed acetal formation and mechanistic investigation
    摘要:
    An efficient protocol for the formation of alpha-iodo mixed acetals, the first step of allyl-mediated 1AD, by reaction of allyl-derived enol ethers and alcohols, using I-2, AgOTf and di-tert-butyl methylpyridine as a novel source of I+, is reported. This reagent combination is capable of tethering glycosyl donors to the secondary alcohol groups of a variety of glycosyl acceptors including mono-, di- and trisaccharides. Mechanistic studies confirm the intramolecular nature of the glycosylation reaction, whilst the attempted use of diol glycosyl acceptors reveals limitations of both regio- and stereo selectivity in the glycosylation step. (C) 2004 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.tetasy.2004.09.003
  • 作为产物:
    参考文献:
    名称:
    Total synthesis of the Glc3Man N-glycan tetrasaccharide
    摘要:
    The total synthesis of the tetrasaccharide Glcalpha(1-->2)Glcalpha(1-->3)Glcalpha(1-->3)ManalphaOMe, which corresponds to the terminal tetrasaccharide portion of the glucose terminated arm of the N-glycan tetradecasaccharide, was achieved by the use of differentially protected selenoglycosides and thioglycosides as glycosyl donors, all of which possessed non-participating protection of the 2-hydroxyl group. Favourable anomeric stereoselectivity was achieved for the glycosylation reactions by the use of ether as solvent, or co-solvent. Global deprotection by catalytic hydrogenation with palladium acetate in a mixture of ethanol and acetic acid yielded the target tetrasaccharide. (C) 2002 Published by Elsevier Science Ltd.
    DOI:
    10.1016/s0040-4020(02)01221-8
点击查看最新优质反应信息

文献信息

  • Synthesis of the Glc3Man N-glycan tetrasaccharide by iterative allyl IAD
    作者:Emanuele Attolino、Ian Cumpstey、Antony J. Fairbanks
    DOI:10.1016/j.carres.2006.02.022
    日期:2006.7
    The synthesis of the tetrasaccharide alpha-D-Glcp-(1 -> 2)-alpha-D-Glcp-(1 -> 3)-alpha-D-Glcp-(1 -> 3)-alpha-D-Manp-OMe, corresponding to the terminal tetrasaccharide portion of the glucose terminated arm of the N-glycan tetradecasaccharide, was achieved with complete stereocontrol by the use of iterative allyl protecting group mediated intramolecular aglycon delivery (allyl IAD) demonstrating the utility of intramolecular glycosylation for the stereocontrolled construction of multiple glycosidic linkages during the synthesis of an oligosaccharide. (c) 2006 Elsevier Ltd. All rights reserved.
  • Total synthesis of the Glc3Man N-glycan tetrasaccharide
    作者:S.C Ennis、I Cumpstey、A.J Fairbanks、T.D Butters、M Mackeen、M.R Wormald
    DOI:10.1016/s0040-4020(02)01221-8
    日期:2002.11
    The total synthesis of the tetrasaccharide Glcalpha(1-->2)Glcalpha(1-->3)Glcalpha(1-->3)ManalphaOMe, which corresponds to the terminal tetrasaccharide portion of the glucose terminated arm of the N-glycan tetradecasaccharide, was achieved by the use of differentially protected selenoglycosides and thioglycosides as glycosyl donors, all of which possessed non-participating protection of the 2-hydroxyl group. Favourable anomeric stereoselectivity was achieved for the glycosylation reactions by the use of ether as solvent, or co-solvent. Global deprotection by catalytic hydrogenation with palladium acetate in a mixture of ethanol and acetic acid yielded the target tetrasaccharide. (C) 2002 Published by Elsevier Science Ltd.
  • Allyl protecting group mediated intramolecular aglycon delivery: optimisation of mixed acetal formation and mechanistic investigation
    作者:Ian Cumpstey、Kampanart Chayajarus、Antony J. Fairbanks、Alison J. Redgrave、Christopher M.P. Seward
    DOI:10.1016/j.tetasy.2004.09.003
    日期:2004.10
    An efficient protocol for the formation of alpha-iodo mixed acetals, the first step of allyl-mediated 1AD, by reaction of allyl-derived enol ethers and alcohols, using I-2, AgOTf and di-tert-butyl methylpyridine as a novel source of I+, is reported. This reagent combination is capable of tethering glycosyl donors to the secondary alcohol groups of a variety of glycosyl acceptors including mono-, di- and trisaccharides. Mechanistic studies confirm the intramolecular nature of the glycosylation reaction, whilst the attempted use of diol glycosyl acceptors reveals limitations of both regio- and stereo selectivity in the glycosylation step. (C) 2004 Elsevier Ltd. All rights reserved.
查看更多