The copper-catalyzed cyclization of activated alkenes with cyclobutanone O-acyl oximes under redox-neutral conditions has been reported. This facile protocol provided an efficient approach to a variety of cyanoalkylated oxindoles and dihydroquinolin-2(1H)-ones with a broad substrate scope and excellent functional group tolerance. In this reaction, sequential C–C bond cleavage, radical addition, and
A silver-catalyzed efficient and practical synthesis of 3-acyl-4-arylquinolin-2(1H)-ones or 3-acyl-4-aryldihydroquinolin-2(1H)-ones through intermolecular radical addition/cyclization in aqueous solution is reported. This method provides a novel, highly efficient, and straightforward route to substituted quinolin-2-ones or 3,4-dihydroquinolin-2-ones in one step. A possible mechanism for the formation
Rh(<scp>i</scp>)-Catalyzed regioselective arylcarboxylation of acrylamides with arylboronic acids and CO<sub>2</sub>
作者:Lei Cai、Lei Fu、Chunlin Zhou、Yuzhen Gao、Shangda Li、Gang Li
DOI:10.1039/d0gc02667k
日期:——
The first Rh(I)-catalyzed regioselective arylcarboxylation of electron-deficient acrylamides with arylboronic acids under atmospheric pressure of CO2 has been developed. A range of acrylamides and arylboronic acids were compatible with this reaction under redox-neutral conditions, leading to a series of malonate derivatives that are versatile building blocks in organic syntheses.
An efficient, silver-induced tandem radical addition/cyclization for the synthesis of 3,4-dihydroquinolinones is presented, which exhibits a good functional group tolerance. The reaction is easy to operate and amenable to a multigram-scale synthesis. Additionally, this work illustrates the formation of a key skeleton for the synthesis of biologically interesting 3,4-dihydroquinolinone alkaloids.