Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives
摘要:
The erbB-2 oncogene encodes a transmembrane protein tyrosine kinase which plays a pivotal role in signal transduction and has been implicated when overexpressed in breast, ovarian, and gastric cancers. Naturally occurring benzoquinoid ansamycin antibiotics herbimycin A, geldanamycin (GDM), and dihydrogeldanamycin were found to potently deplete p185, the erbB-2 oncoprotein, in human breast cancer SKBR-3 cells in culture. Chemistry efforts to modify selectively the quinoid moiety of GDM afforded derivatives with greater potency in vitro and in vivo. Analogs demonstrated inhibition of p185 phosphotyrosine in cell culture and in vivo after systemic drug administration to nu/nu nude mice bearing Fisher rat embryo cells transfected with human erbB-2 (FRE/erbB-2). Specifically, dosed intraperitoneally at 100 mg/kg, 17-(allylamino)-17-demethoxygeldanamycin and other 17-amino analogs were effective at reducing p185 phosphotyrosine in subcutaneous flank FRE/erbB-2 tumors. Modifications to the 17-19-positions of the quinone ring revealed a broad structure-activity relationship in vitro.
Several analogs of 2,3-diaryl pyrroles were synthesized and evaluated as inhibitors of Eimeria tenella cGMP-dependent protein kinase and in. in vivo anticoccidial assays. A 4-fluorophenyl group enhances both in vitro and in Vivo activities. The most potent analogs are the-5-(N-methyl, N-ethyl, and N-methylazetidine methyl) piperidyl derivatives 12, 23, and 34. These compounds have a broad spectrum of activity. Based on the in vivo efficacy and cost of synthesis, the N-ethyl analog 23 was chosen as a novel anticoccidial agent for a field trial. (c) 2005 Elsevier Ltd. All rights reserved.