Isosorbide dinitrate tablets should be stored in tight, light-resistant containers at room temperature (25 °C) and should not be exposed to extremes in temperature.
旋光度:
Specific optical rotation: +135 deg @ 20 °C/D (alcohol, 1%)
碰撞截面:
151.6 Ų [M+H]+ [CCS Type: TW, Method: calibrated with polyalanine and drug standards]
计算性质
辛醇/水分配系数(LogP):
1.3
重原子数:
16
可旋转键数:
2
环数:
2.0
sp3杂化的碳原子比例:
1.0
拓扑面积:
129
氢给体数:
0
氢受体数:
8
ADMET
代谢
肝脏的
Hepatic
来源:DrugBank
代谢
静脉或口服给药后,血浆中的主要代谢物是5-单硝酸异山梨酯。
After intravenous or oral admin, primary metabolite in plasma is 5-isosorbide mononitrate.
Biotransformation of organic nitrates is result of reductive hydrolysis catalyzed by hepatic enzyme glutathione-organic nitrate reductase. Enzyme converts lipid-soluble organic nitrate esters into more water-soluble denitrated metabolites & inorganic nitrite. /organic nitrates/
...Biotransformation of isosorbide dinitrate in dogs and in man caused de-esterification. Isosorbide is major urinary metabolite, together with very small amount of the 2- and 5-mononitrates. /isosorbide dinitrate/ was absent from urine of dogs & man.
IDENTIFICATION: Isosorbide dinitrate is a vasodilator, anti-anginal drug. Isosorbide dinitrate is a fine white to ivory-white odorless crystalline solid. It is sparingly soluble in water; freely soluble in acetone, chloroform, alcohol and ether. Indications: Isosorbide dinitrate is used principally in the management of patients with ischemic heart disease. It reduces the number, duration and severity of episodes of angina pectoris. Exercise tolerance is increased and the requirements for nitroglycerin are reduced. It is effective in all forms of angina, (stable effort angina, mixed angina, unstable angina and vasospastic or variant angina). It is used in acute myocardial infarction in control of ischemic pain, reduction of elevated blood pressure and in the treatment of pulmonary edema and congestive cardiac failure. It is also useful in the treatment of severe hypertension. The iv infusion can be used for precise control of blood pressure. It is used to control blood pressure during general anaesthesia when precise control of blood pressure is important. It may also be used in oesophageal spasm. HUMAN EXPOSURE: Main risks and target organs: Vasodilatation and hypotension (with their accompanying complications) are the main risks with overdose of isosorbide dinitrate. Heart and blood vessels are the target organs. Methemoglobinemia can occur. Summary of clinical effects: Features of poisoning may appear within few minutes to one hour or more after exposure. Tachycardia, hypotension followed by bradycardia and collapse, throbbing headache, dizziness, restlessness, syncope, convulsions and coma could occur. Some of the other features that can be seen include vomiting, diarrhea, cyanosis and methemoglobinemia. Respiratory failure may occur in severe cases. Clinical diagnosis is based on the history of exposure, and signs and symptoms observed: tachycardia, hypotension, throbbing headache, flushing of the face. Contraindications: Hypersensitivity to isosorbide dinitrate. Pre-existing methemoglobinemia. Marked anaemia, head trauma or cerebral hemorrhage. Routes of entry: Oral: Oral entry and absorption through gastro-intestinal tract is the most frequent route of intoxication. Absorption can occur sublingually. Dermal: A preliminary report of experience with isosorbide dinitrate cream is available. Parenteral: Intoxication may occur in patients treated with intravenous isosorbide dinitrate. Absorption by route of exposure: Oral: Isosorbide dinitrate is readily absorbed from the oral mucosa and has a short duration of action. Following oral administration it is well absorbed from the gastrointestinal tract. In view of its first pass effect and short plasma half life, slow release formulations are available. Sublingual administration produces maximal concentration of the drug in plasma within 6 minutes. Dermal: Isosorbide dinitrate is also absorbed through the skin from an ointment base. The bioavailability of isosorbide dinitrate is about 29% following oral or sublingual dosing. Distribution by route of exposure: No data available. Biological half-life by route of exposure: The terminal elimination half-life of isosorbide dinitrate is 54.7 minutes, 48.8 minutes and 47.7 minutes respectively following IV injection, sublingual and oral administration. Metabolism: The major route of metabolism of isosorbide dinitrate in man is by enzymatic denitration followed by formation of glucuronides. The primary initial metabolites, isosorbide-2-mononitrate and isosorbide-5-mononitrate have longer half-lives (2-5 hours) and are presumed to be responsible, at least in part, for the therapeutic efficacy of isosorbide dinitrate. A substantial amount of drug can be metabolized due to the "first pass" effect. Elimination by route of exposure: Largely excreted in urine as isosorbide glucuronide. Mode of action: Toxicodynamics: Isosorbide dinitrate has dilator properties on vascular smooth muscle in virtually all vascular beds. Nitrates dilate veins, arteries, and, in high concentrations, arterioles. The beneficial effects in therapeutic doses and the effects seen with overdose are attributable to the physiologic consequences of systemic venous and arteriolar vasodilation. Cardiac preload, systemic blood pressure and systemic vascular resistance all show a progressive decrease. A state of hypotension, circulatory collapse and shock may result. Methemoglobinemia may occur following overdose of isosorbide dinitrate or during therapy. Pharmacodynamics: Organic nitrates can activate guanylate cyclase and increase the synthesis of guanosine 3', 5' - monophosphate (cyclic GMP) in smooth muscle and other tissues. The reactive free radical nitric oxide (NO) is formed which interacts with and activates guanylate cyclase. Interactions: Several important interactions may occur with other cardiovascular drugs. Severe postural hypotension has been observed in patients given isosorbide dinitrate and hydralazine for chronic cardiac failure.Undue dizziness and faintness may occur with sublingual nitrates and beta-adrenoceptor blocking drugs. Complete AV block has been reported after use of sublingual nitrates in patients receiving lignocaine by infusion. Even cardiac asystole may occur. Disopyramide, tricyclic antidepressants and other drugs with anticholinergic effects may prevent dissolution of sublingual isosorbide dinitrate tablets by causing dry mouth. The effects of acetylcholine, epinephrine and histamine can be antagonized by isosorbide dinitrate. An enhanced hypotensive effect may be seen with alcohol. Main adverse effects: The toxic effects of the nitrates are unaffected by the chemical form or by the route of administration and all the nitrates have a common profile of adverse effects. Hypotension, reflex tachycardia and palpitations may occur. Postural hypotension and syncope are seen, especially in elderly patients. Rarely severe bradycardia has been reported. Throbbing headache is quite common. This symptom is likely to recede as tolerance develops. Peripheral oedema is also frequently seen. Transient hypoxaemia with precipitation of angina is seen occasionally. Transient cerebral ischaemic episodes unrelated to changes in blood pressure are rarely seen. It is therefore advisable to initiate treatment with small doses in patients with cerebrovascular disease. Methaemoglobinaemia may be seen after therapeutic doses. Weakness, transient dizziness, restlessness and collapse may occur. Cutaneous flushing, perspiration and exfoliative dermatitis have all been reported. Nausea and vomiting are not frequent. Although tolerance has long been associated with nitrates, its clinical implications are not clear. Tolerance is best defined as a decreasing pharmacological effect over time, often with a need for an increasing dose to achieve a given action. Tolerance may be partial or complete and may occur with one type of nitrate therapy and not with others; disappearance of the throbbing headache is a useful sign. However, due to an attenuation of the antihypertensive effect, these agents are not useful in the long term management of hypertension. The part played by the arterial and venous sides of the circulation pertaining to the development of tolerance is not clear. By providing a long (approximately 8 hours) nitrate-free interval, the development of tolerance may be avoided or reduced. Decreasing the number of daily doses of isosorbide dinitrate also helps to achieve this effect. Sustained release preparations are more likely to produce tolerance than the short acting preparations.
参考文献:M Chen, V Vijay, Q Shi, Z Liu, H Fang, W Tong. 美国食品药品监督管理局批准的药物标签用于研究药物诱导的肝损伤,《药物发现今日》,16(15-16):697-703, 2011. PMID:21624500 DOI:10.1016/j.drudis.2011.05.007
M Chen, A Suzuki, S Thakkar, K Yu, C Hu, W Tong. DILIrank:按人类发展药物诱导肝损伤风险排名的最大参考药物清单。《药物发现今日》2016, 21(4): 648-653. PMID:26948801 DOI:10.1016/j.drudis.2016.02.015
References:M Chen, V Vijay, Q Shi, Z Liu, H Fang, W Tong. FDA-Approved Drug Labeling for the Study of Drug-Induced Liver Injury, Drug Discovery Today, 16(15-16):697-703, 2011. PMID:21624500 DOI:10.1016/j.drudis.2011.05.007
M Chen, A Suzuki, S Thakkar, K Yu, C Hu, W Tong. DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today 2016, 21(4): 648-653. PMID:26948801 DOI:10.1016/j.drudis.2016.02.015
Absorption of isosorbide dinitrate after oral dosing is nearly complete, but bioavailability is highly variable (10% to 90%), with extensive first-pass metabolism in the liver. The average bioavailability of isosorbide dinitrate is about 25%.
来源:DrugBank
吸收、分配和排泄
分布容积
2到4升/千克
2 to 4 L/kg
来源:DrugBank
吸收、分配和排泄
舌下给药后,起效时间为2-3分钟,药效消失大约需要2小时。
After sublingual admin, onset of effect is 2-3 min & offset of effect is about 2 hr.
Following sublingual doses of 5 mg, oral conventional tablets of 5 mg, and oral sustained-release tablets of 20 mg, mean peak isosorbide dinitrate levels of 8.9, 3.1, and 1.4 ng/ml, occurred at 30, 40, and 40 min respectively. Plasma levels...after sustained-release dosage...maintained above half of mean peak level for 10 hours.
Chronic oral administration of isosorbide dinitrate (120 to 720 mg daily) has resulted in persistence of parent compound and higher concentration of metabolite in plasma.
Highly Chemoselective Reduction of 2,5-Dinitro-1,4:3,6-dianhydro-D-glucitol with Titanium(III) Tetrahydroborates: Efficient Synthesis of Isomerically Pure 2- and 5-Nitro-1,4:3,6-dianhydro-D-glucitols
DISUBSTITUTED TRIFLUOROMETHYL PYRIMIDINONES AND THEIR USE
申请人:BAYER PHARMA AKTIENGESELLSCHAFT
公开号:US20160221965A1
公开(公告)日:2016-08-04
The present application relates to novel 2,5-disubstituted 6-(trifluoromethyl)pyrimidin-4(3H)-one derivatives, to processes for their preparation, to their use alone or in combinations for the treatment and/or prevention of diseases, and to their use for preparing medicaments for the treatment and/or prevention of diseases, in particular for treatment and/or prevention of cardiovascular, renal, inflammatory and fibrotic diseases.
SULFOXIMINE SUBSTITUTED QUINAZOLINES FOR PHARMACEUTICAL COMPOSITIONS
申请人:BLUM Andreas
公开号:US20140135309A1
公开(公告)日:2014-05-15
This invention relates to novel sulfoximine substituted quinazoline derivatives of formula I
wherein Ar, R
1
and R
2
are as defined herein, and their use as MNK1 (MNK1a or MNK1b) and/or MNK2 (MNK2a or MNK2b) kinase inhibitors, pharmaceutical compositions containing the same, and methods of using the same as agents for treatment or amelioration of MNK1 (MNK1a or MNK1b) and/or MNK2 (MNK2a or MNK2b) mediated disorders.
[EN] SULFOXIMINE SUBSTITUTED QUINAZOLINES FOR PHARMACEUTICAL COMPOSITIONS<br/>[FR] QUINAZOLINES SUBSTITUÉES PAR SULFOXIMINE POUR COMPOSITIONS PHARMACEUTIQUES
申请人:BOEHRINGER INGELHEIM INT
公开号:WO2014072244A1
公开(公告)日:2014-05-15
This invention relates to novel sulfoximine substituted quinazoline derivatives of formula (I), wherein Ar, R1 and R2 are as defined in the description and claims, and their use as MNK1 (MNK1a or MNK1b) and/or MNK2 (MNK2a or MNK2b) kinase inhibitors, pharmaceutical compositions containing the same, and methods of using the same as agents for treatment or amelioration of MNK1 (MNK1a or MNK1b) and/or MNK2 (MNK2a or MNK2b) mediated disorders.
[EN] QUINONE BASED NITRIC OXIDE DONATING COMPOUNDS<br/>[FR] COMPOSÉS DONNEURS D'OXYDE NITRIQUE À BASE DE QUINONE
申请人:NICOX SA
公开号:WO2013060673A1
公开(公告)日:2013-05-02
The present invention relates to nitric oxide donor compounds having a quinone based structure, to processes for their preparation and to their use in the treatment of pathological conditions where a deficit of NO plays an important role in their pathogenesis.
[EN] SULFOXIMINE SUBSTITUTED PYRROLOTRIAZINES FOR PHARMACEUTICAL COMPOSITIONS<br/>[FR] PYRROLOTRIAZINES À SUBSTITUTION SULFOXIMINE POUR COMPOSITIONS PHARMACEUTIQUES
申请人:BOEHRINGER INGELHEIM INT
公开号:WO2015091156A1
公开(公告)日:2015-06-25
This invention relates to novel sulfoximine substituted pyrrolotriazine derivatives of formula wherein Ar, R1 and R2 are as defined in the description and claims, and their use as MNK1 (MNK1 a or MNK1 b) and/or MNK2 (MNK2a or MNK2b) kinase inhibitors, pharmaceutical compositions containing the same, and methods of using the same as agents for treatment or amelioration of MNK1 (MNK1 a or MNK1 b) and/or MNK2 (MNK2a or MNK2b) mediated disorders.