Synthesis and immunostimulatory activity of sugar-conjugated TLR7 ligands
摘要:
Toll-like receptors (TLRs) are a type of pattern recognition receptors (PRRs), which are activated by recognizing pathogen-associated molecular patterns (PAMPs). The activation of TLRs initiates innate immune responses and subsequently leads to adaptive immune responses. TLR agonists are effective immuomodulators in vaccine adjuvants for infectious diseases and cancer immunotherapy. In exploring hydrophilic small molecules of TLR7 ligands using the cell-targeted property of a vaccine adjuvant, we conjugated 1V209, a small TLR7 ligand molecule, with various low or middle molecular weight sugar molecules that work as carriers. The sugar-conjugated 1V209 derivatives showed increased water solubility and higher immunostimulatory activity in both mouse and human cells compared to unmodified 1V209. The improved immunostimulatory potency of sugar-conjugates was attenuated by an inhibitor of endocytic process, cytochalasin D, suggesting that conjugation of sugar moieties may enhance the uptake of TLR7 ligand into the endosomal compartment. Collectively our results support that sugar-conjugated TLR7 ligands are applicable to novel drugs for cancer and vaccine therapy.
Synthesis and immunostimulatory activity of sugar-conjugated TLR7 ligands
摘要:
Toll-like receptors (TLRs) are a type of pattern recognition receptors (PRRs), which are activated by recognizing pathogen-associated molecular patterns (PAMPs). The activation of TLRs initiates innate immune responses and subsequently leads to adaptive immune responses. TLR agonists are effective immuomodulators in vaccine adjuvants for infectious diseases and cancer immunotherapy. In exploring hydrophilic small molecules of TLR7 ligands using the cell-targeted property of a vaccine adjuvant, we conjugated 1V209, a small TLR7 ligand molecule, with various low or middle molecular weight sugar molecules that work as carriers. The sugar-conjugated 1V209 derivatives showed increased water solubility and higher immunostimulatory activity in both mouse and human cells compared to unmodified 1V209. The improved immunostimulatory potency of sugar-conjugates was attenuated by an inhibitor of endocytic process, cytochalasin D, suggesting that conjugation of sugar moieties may enhance the uptake of TLR7 ligand into the endosomal compartment. Collectively our results support that sugar-conjugated TLR7 ligands are applicable to novel drugs for cancer and vaccine therapy.
Development of hepatitis C virus (HCV) entry inhibitors represents an emerging approach that satisfies a tandem mechanism for use with other inhibitors in a multifaceted cocktail. By screening Chinese herbal extracts, oleanolic acid (OA) was found to display weak potency to inhibit HCV entry with an IC50 of 10 mu M. Chemical exploration of this triterpene compound revealed its pharmacophore requirement for blocking HCV entry, rings A, B, and E, are conserved while ring D is tolerant of some modifications. Hydroxylation at C-16 significantly enhanced its potency for inhibiting HCV entry with IC50 at 1.4 mu M. Further modification by conjugation of this new lead with a disaccharide at 28-COOH removed the undesired hemolytic effect and, more importantly, increased its potency by similar to 5-fold (54a, IC50 0.3 mu M). Formation of a triterpene dimer via a linker bearing triazole (70) dramatically increased its potency with IC50 at similar to 10 nM. Mechanistically, such functional triterpenes interrupt the interaction between HCV envelope protein E2 and its receptor CD81 via binding to E2, thus blocking virus and host cell recognition. This study establishes the importance of triterpene natural products as new leads for the development of potential HCV entry inhibitors.