IDENTIFICATION AND USE: Vigabatrin is a structural analog of gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the CNS. Vigabatrin is commercially available as a racemic mixture of 2 enantiomers; the S enantiomer is pharmacologically active and the R enantiomer is inactive. HUMAN STUDIES: Visual field defects, including permanent vision loss, have been reported in infants, children, and adults receiving vigabatrin. Based on clinical studies in adults, bilateral concentric visual field constriction ranging in severity from mild to severe may occur in 30% or more of patients receiving the drug. Severe cases may be characterized by tunnel vision to within 10 degrees of visual fixation, which can lead to disability. In some cases, vigabatrin can also damage the central retina and decrease visual acuity. Coma, unconsciousness, and/or drowsiness were described in the majority of cases of vigabatrin overdose. Other less commonly reported symptoms included vertigo, psychosis, apnea or respiratory depression, bradycardia, agitation, irritability, confusion, headache, hypotension, abnormal behavior, increased seizure activity, status epilepticus, and speech disorder. These symptoms resolved with supportive care. ANIMAL STUDIES: Vigabatrin showed no carcinogenic potential in mouse or rat when given in the diet at doses up to 150 mg/kg/day for 18 months (mouse) or at doses up to 150 mg/kg/day for 2 years (rat). Vigabatrin (300 or 450 mg/kg) was administered by intraperitoneal injection to a mutant mouse strain on a single day during organogenesis (day 7, 8, 9, 10, 11, or 12). An increase in malformations (including cleft palate) was observed at both doses. In rats, oral administration of vigabatrin (50, 100, or 150 mg/kg) throughout organogenesis resulted in decreased fetal body weights and increased incidences of fetal anatomic variations. Oral administration of vigabatrin (50, 100, 150 mg/kg) to rats from the latter part of pregnancy through weaning produced long-term neurohistopathological (hippocampal vacuolation) and neurobehavioral (convulsions) abnormalities in the offspring. Administration of vigabatrin (oral doses of 50 to 200 mg/kg) to pregnant rabbits throughout the period of organogenesis was associated with an increased incidence of malformations (cleft palate) and embryo-fetal death; these findings were observed in two separate studies. No adverse effects on male or female fertility were observed in rats at oral doses up to 150 mg/kg/day. Oral administration of vigabatrin (5, 15, or 50 mg/kg) to young rats during the neonatal and juvenile periods of development (postnatal days 4-65) produced neurobehavioral (convulsions, neuromotor impairment, learning deficits) and neurohistopathological (brain vacuolation, decreased myelination, and retinal dysplasia) abnormalities in treated animals. The early postnatal period in rats is generally thought to correspond to late pregnancy in humans in terms of brain development. Vigabatrin was negative in in vitro (Ames, CHO/HGPRT mammalian cell forward gene mutation, chromosomal aberration in rat lymphocytes) and in in vivo (mouse bone marrow micronucleus) assays.
Vigabatrin increases brain concentrations of gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter in the CNS, by irreversibly inhibiting enzymes that catabolize GABA (gamma-aminobutyric acid transaminase, GABA-T). Duration of action is determined by rate of GABA-T re-synthesis. Vigabatrin may also work by suppressing repetitive neuronal firing through inhibition of voltage-sensitive sodium channels. Although administered as a racemic mixture, only the S(+) enantiomer is pharmacologically active.
In controlled clinical trials, addition of vigabatrin to standard anticonvulsant therapy was reported to cause an immediate and marked decrease in serum enzyme levels that could be reproduced by simply mixing vigabatrin with plasma. In some instances, markedly raised serum ALT levels were found to rapidly fall into the normal range with treatment. Vigabatrin inhibits GABA transaminase and is thus suspected of also being an inhibitor of alanine and aspartate aminotransferase, accounting for its unusual effects on liver associated enzymes. In prelicensure clinical trials, there were no reports of serum enzyme elevations during treatment and no instances of clinically apparent liver injury. After its general availability, however, there have been isolated case reports of severe liver injury and hepatitis associated with vigabatrin use. The onset of injury was 3 to 10 months after starting vigabatrin and was largely hepatocellular. One case resulted in rapid death from liver failure and a second worsened despite stopping and ultimately required a course of immunosuppression with prednisone and azathioprine (Case 1). Thus, clinically apparent liver injury from vigabatrin may occur and can be severe, but is rare.
Absorption following oral administration is essentially complete. The Tmax is approximately 2.5 hours in infants (5m - 2y) and 1 hour in all other age groups.
来源:DrugBank
吸收、分配和排泄
消除途径
大约95%的药物在给药后72小时内通过尿液排出,其中约80%为未改变的母药。
Approximately 95% of the drug is eliminated in the urine within 72 hours of administration, of which ~80% is unchanged parent drug.
来源:DrugBank
吸收、分配和排泄
分布容积
Vigabatrin 在体内广泛分布,平均稳态分布体积为 1.1 L/kg。
Vigabatrin is widely distributed throughout the body with a mean steady-state volume of distribution of 1.1 L/kg.
The oral clearance of vigabatrin is 2.4 L/h for infants (5m - 2y), 5.1 L/h for children (3y - 9y), 5.8 L/h for adolescents (10y - 16y), and 7 L/h for adults.
Drug transporters in various tissues, such as intestine, kidney, liver and brain, are recognized as important mediators of absorption, distribution, metabolism and excretion of drug substances. This review gives a current status on the transporter(s) mediating the absorption, distribution, metabolism and excretion properties of the anti-epileptic drug substance vigabatrin. For orally administered drugs, like vigabatrin, the absorption from the intestine is a prerequisite for the bioavailability. Therefore, transporter(s) involved in the intestinal absorption of vigabatrin in vitro and in vivo are discussed in detail. Special focus is on the contribution of the proton-coupled amino acid transporter 1 (PAT1) for intestinal vigabatrin absorption. Furthermore, the review gives an overview of the pharmacokinetic parameters of vigabatrin across different species and drug-food and drug-drug interactions involving vigabatrin.
[EN] PROCESSES USEFUL FOR THE SYNTHESIS OF (R)-1-{2-[4'-(3-METHOXYPROPANE-1-SULFONYL)-BIPHENYL-4-YL]-ETHYL}-2-METHYL-PYRROLIDINE<br/>[FR] PROCÉDÉS UTILES POUR LA SYNTHÈSE DE LA (R)-1-{2-[4'-(3-MÉTHOXYPROPANE-1-SULFONYL)-BIPHÉNYL-4-YL]-ÉTHYL}-2-MÉTHYL-PYRROLIDINE
申请人:ARENA PHARM INC
公开号:WO2009128907A1
公开(公告)日:2009-10-22
Processes useful for making a pharmaceutically useful compound according to Formula (I), forms of such a compound, and intermediates useful in such processes are described.
根据公式(I)制备药用化合物的有用过程,以及该化合物的形式和在这些过程中有用的中间体被描述。
[EN] INDANE DERIVATIVES AS MGLUR7 MODULATORS<br/>[FR] DÉRIVÉS D'INDANE UTILISÉS COMME MODULATEURS DE MGLUR7
申请人:TAKEDA PHARMACEUTICALS CO
公开号:WO2017131221A1
公开(公告)日:2017-08-03
The present invention provides compounds of formula (I) and pharmaceutically acceptable salts thereof, wherein R1, R2, R3, R4a and R4b are as defined in the specification, processes for their preparation, pharmaceutical compositions containing them and their use in therapy. The compounds of formula (I) are mGluR7 modulators.
Prodrugs of GABA analogs, compositions and uses thereof
申请人:Gallop A. Mark
公开号:US20060229361A1
公开(公告)日:2006-10-12
The present invention provides prodrugs of GABA analogs, pharmaceutical compositions of prodrugs of GABA analogs and methods for making prodrugs of GABA analogs. The present invention also provides methods for using prodrugs of GABA analogs and methods for using pharmaceutical compositions of prodrugs of GABA analogs for treating or preventing common diseases and/or disorders.
The invention relates to particular substituted heterocycle fused gamma-carbolines, their prodrugs, in free, pharmaceutically acceptable salt and/or substantially pure form as described herein, pharmaceutical compositions thereof, and methods of use in the treatment of diseases involving 5-HT2A receptor, serotonin transporter (SERT) and/or pathways involving dopamine D2 receptor signaling systems.
[EN] A PROCESS FOR THE PREPARATION OF VIGABATRIN<br/>[FR] PROCÉDÉ DE PRÉPARATION DE VIGABATRINE
申请人:AUROBINDO PHARMA LTD
公开号:WO2019180547A1
公开(公告)日:2019-09-26
The present invention provides a process for the preparation of vigabatrin of formula (I) comprising of dissolving vigabatrin in water, optionally treating with charcoal, filtering and adding an acid to the reaction mass followed by the addition of an organic solvent and then isolating vigabatrin of formula (I) with high purity.