摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,2,3,6-tetra-O-acetyl-4-O-(2,6-di-O-acetyl-β-D-galactopyranosyl)-α,β-D-glucopyranose | 75795-61-8

中文名称
——
中文别名
——
英文名称
1,2,3,6-tetra-O-acetyl-4-O-(2,6-di-O-acetyl-β-D-galactopyranosyl)-α,β-D-glucopyranose
英文别名
1,2,3,6-tetra-O-acetyl-4-O-(2,6-di-O-acetyl-β-D-galactopyranosyl)-β-D-glucopyranose
1,2,3,6-tetra-O-acetyl-4-O-(2,6-di-O-acetyl-β-D-galactopyranosyl)-α,β-D-glucopyranose化学式
CAS
75795-61-8;75795-68-5
化学式
C24H34O17
mdl
——
分子量
594.524
InChiKey
BHNGDVMMXNUCOL-XZYTYGINSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    659.0±55.0 °C(Predicted)
  • 密度:
    1.41±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    -1.97
  • 重原子数:
    41.0
  • 可旋转键数:
    10.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.75
  • 拓扑面积:
    225.95
  • 氢给体数:
    2.0
  • 氢受体数:
    17.0

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    O-αl-呋喃果糖基-(1→3)-O-β-d-吡喃半乳糖基-(1→4)-d-葡萄糖(3'-O-α-l-呋喃果糖基乳糖)的合成及改进的合成路线其β-(1″→3′)-连接的异构体
    摘要:
    摘要乳糖与2,2-二甲氧基丙烷在N,N-二甲基-甲酰胺中于80-85°进行异丙基异丙基化反应,得到动力学上有利的4',6'-乙缩醛1和热力学上更稳定的3'的1:2混合物, 4'-乙缩醛2,通过色谱法分离。1,2,3,6,2',6'-六乙酸酯(3)和1,2,3,6,2',6'-六苯甲酸酯(4)以及相应的脱丙酮酯图5和图6是通过标准程序制备的。1,2,3,6,2',6'-六-O-乙酰基-α,β-乳糖(5)与2,3,4三-O-苯甲酰基-1-呋喃核糖基溴的缩合反应溴离子催化得到α-(1''→3')-连接的被保护的三糖8。脱乙酰基,然后氢解除去苄基,得到标题三糖10。六乙酸酯5也与2,3,4-三-O-乙酰基-α-1-呋喃核糖基溴化物缩合,
    DOI:
    10.1016/s0008-6215(00)85429-4
  • 作为产物:
    描述:
    甲醇 作用下, 反应 4.5h, 以92%的产率得到1,2,3,6-tetra-O-acetyl-4-O-(2,6-di-O-acetyl-β-D-galactopyranosyl)-α,β-D-glucopyranose
    参考文献:
    名称:
    Integrating ReSET with Glycosyl Iodide Glycosylation in Step-Economy Syntheses of Tumor-Associated Carbohydrate Antigens and Immunogenic Glycolipids
    摘要:
    Carbohydrates mediate a wide range of biological processes, and understanding these events and how they might be influenced is a complex undertaking that requires access to pure glycoconjugates. The isolation of sufficient quantities of carbohydrates and glycolipids from biological samples remains a significant challenge that has redirected efforts toward chemical synthesis. However, progress toward complex glycoconjugate total synthesis has been slowed by the need for multiple protection and deprotection steps owing to the large number of similarly reactive hydroxyls in carbohydrates. Two methodologies, regioselective silyl exchange technology (ReSET) and glycosyl iodide glycosylation have now been integrated to streamline the synthesis of the globo series trisaccharides (globotriaose and isoglobotriaose) and alpha-lactosylceramide (alpha-LacCer). These glycoconjugates include tumor-associated carbohydrate antigens (TACAs) and immunostimulatory glycolipids that hold promise as immunotherapeutics. Beyond the utility of the step-economy syntheses afforded by this synthetic platform, the studies also reveal a unique electronic interplay between acetate and silyl ether protecting groups. Incorporation of acetates proximal to silyl ethers attenuates their reactivity while reducing undesirable side reactions. This phenomenon can be used to fine-tune the reactivity of silylated/acetylated sugar building blocks.
    DOI:
    10.1021/jo402736g
点击查看最新优质反应信息