摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-hexyl-1-methyl-1H-imidazol-3-ium 2-(4-isobutylphenyl)propanoate | 1289675-22-4

中文名称
——
中文别名
——
英文名称
3-hexyl-1-methyl-1H-imidazol-3-ium 2-(4-isobutylphenyl)propanoate
英文别名
——
3-hexyl-1-methyl-1H-imidazol-3-ium 2-(4-isobutylphenyl)propanoate化学式
CAS
1289675-22-4
化学式
C10H19N2*C13H17O2
mdl
——
分子量
372.551
InChiKey
HNJNWRRMLAUBEF-UHFFFAOYSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.63
  • 重原子数:
    27.0
  • 可旋转键数:
    9.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.57
  • 拓扑面积:
    48.94
  • 氢给体数:
    0.0
  • 氢受体数:
    3.0

反应信息

  • 作为产物:
    描述:
    布洛芬1-己基-3-甲基咪唑氯化物 在 Amberlyst A-26 (OH- form) 作用下, 以 甲醇乙腈二氯甲烷 为溶剂, 以100%的产率得到3-hexyl-1-methyl-1H-imidazol-3-ium 2-(4-isobutylphenyl)propanoate
    参考文献:
    名称:
    用于杂芳盐和离子液体的简单卤化物阴离子交换方法
    摘要:
    一种广泛而简单的方法允许在非水介质中使用阴离子交换树脂(A-型)将季杂芳烃和铵盐中的卤离子交换为各种阴离子。使用两种不同的阴离子源(酸或铵盐)并改变溶剂的极性来检查 AER(OH- 形式)的阴离子负载。然后将有机溶剂中的 AER(A-形式)方法应用于几种季杂芳族盐和离子液体,阴离子交换以优异的定量收率进行,同时去除卤化物杂质。依靠目标离子对的疏水性进行反阴离子交换,使用具有可变极性的有机溶剂,如 CH3OH、CH3CN 和偶极非羟基溶剂混合物 CH3CN:CH2Cl2 (3:
    DOI:
    10.3390/molecules17044007
点击查看最新优质反应信息

文献信息

  • A general halide-to-anion switch for imidazolium-based ionic liquids and oligocationic systems using anion exchange resins (A− form)
    作者:Ermitas Alcalde、Immaculada Dinarès、Anna Ibáñez、Neus Mesquida
    DOI:10.1039/c0cc05350c
    日期:——
    Further studies on the application of an AER (A(-) form) method broadened the anion exchange scope of representative ionic liquids and bis(imidazolium) systems. Depending on the hydrophobicity nature of the targeted imidazolium species and counteranions, different organic solvents were used to swap halides for assorted anions, proceeding in excellent to quantitative yields.
    对AER(A(-)形式)方法应用的进一步研究拓宽了代表性离子液体和双(咪唑鎓)体系的阴离子交换范围。根据目标咪唑类物质和抗衡阴离子的疏性,使用不同的有机溶剂将卤化物交换为各种阴离子,从而以优异的产率获得定量的收率。
  • Surfactant properties of ionic liquids containing short alkyl chain imidazolium cations and ibuprofenate anions
    作者:Corine Tourné-Péteilh、Jean-Marie Devoisselle、André Vioux、Patrick Judeinstein、Martin In、Lydie Viau
    DOI:10.1039/c1cp21057b
    日期:——
    Interfacial tension, electrical conductivity, NMR self-diffusion and DLS experiments have been used to investigate the self-aggregation in water of ionic liquids associating an ibuprofenate anion and 1-alkyl-3-methylimidazolium [CnMIm]+ (n = 4, 6, 8) cations. Despite the short alkyl chain on imidazolium cations (n ≤ 8), these ionic liquids exhibit particularly low Critical Aggregation Concentrations (CAC), significantly lower than their parent 1-alkyl-3-methylimidazolium chloride salts. This behaviour is attributed to the formation of catanionic pairs between ibuprofenate and imidazolium.
    我们利用界面张力、电导率、核磁共振自扩散和 DLS 实验研究了布洛芬酸阴离子和 1-烷基-3-甲基咪唑鎓 [CnMIm]+(n = 4、6、8)阳离子离子液体中的自聚集情况。尽管咪唑阳离子上的烷基链很短(n ≤ 8),但这些离子液体的临界聚集浓度(CAC)却特别低,明显低于其母体 1-烷基-3-甲基咪唑化鎓盐。这种行为归因于布洛芬酸盐和咪唑鎓之间形成了阴离子对。
  • Active Pharmaceutical Ingredient-Ionic Liquids (API-ILs): Nanostructure of the Glassy State Studied by Electron Paramagnetic Resonance Spectroscopy
    作者:Olga D. Bakulina、Mikhail Yu. Ivanov、Dmitriy V. Alimov、Sergey A. Prikhod’ko、Nicolay Yu. Adonin、Matvey V. Fedin
    DOI:10.3390/molecules27165117
    日期:——
    for pharmaceutical applications. Although nanostructuring phenomena were actively investigated in common ILs, their studies in API-ILs are scarce so far. In this work, using the complex methodology of Electron Paramagnetic Resonance (EPR) and dissolved spin probes, we investigate nanostructuring phenomena in a series of API-ILs: [Cnmim][Ibu], [Cnmim][Gly], and [Cnmim][Sal] with n = 2, 4, and 6, respectively
    活性药物成分离子液体 (API-IL) 作为一类特殊的离子液体,具有不寻常的理化特性以及同时具有药物应用潜力的特性,引起了越来越多的关注。尽管纳米结构现象在普通离子液体中得到了积极的研究,但迄今为止在 API-IL 中的研究还很少。在这项工作中,我们使用电子顺磁共振 (EPR) 和溶解自旋探针的复杂方法,研究了一系列 API-IL 中的纳米结构现象:[C n mim][Ibu]、[C n mim][Gly]、和 [C n mim][Sal],其中n分别为 2、4 和 6。我们揭示了 API-IL 和常见 IL 的相似趋势,以及所研究的 API-IL 固有的特性。 [C n mim][Ibu] 观察到的异常行为归因于 [Ibu] -阴离子中存在非极性片段,与常见的 IL 相比,这导致在自由基周围形成更复杂的纳米结构。了解这种自组织分子结构形成的一般趋势对于应用 API-IL 具有根本意义和重要性。
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (1aR,4E,7aS,8R,10aS,10bS)-8-[((二甲基氨基)甲基]-2,3,6,7,7a,8,10a,10b-八氢-1a,5-二甲基-氧杂壬酸[9,10]环癸[1,2-b]呋喃-9(1aH)-酮 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸溴乙酯 齐墩果酸二甲胺基乙酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 齐墩果-12-烯-28-酸,3,7-二羰基-(9CI) 齐墩果-12-烯-28-酸,3,21,29-三羟基-,g-内酯,(3b,20b,21b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸