摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 1065560-67-9

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
1065560-67-9
化学式
C17H17F2FeN5O7
mdl
——
分子量
497.195
InChiKey
PQPGJYGFXIPJNK-UHFFFAOYSA-J
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    间氯过氧苯甲酸 作用下, 以 乙腈 为溶剂, 反应 0.05h, 生成
    参考文献:
    名称:
    关于强尾氟化四酰氨基大环配体 (TAML) 活化剂的铁 (V) 反应性
    摘要:
    过氧化物的四酰氨基铁大环配体 (TAML) 活化剂的电子性质可以通过分别改变“头”和“尾”大环组分上的取代基进行精细和粗略调整。通过检查带有头 NO2 和尾 F 取代基的 TAML 氧化铁(V)配合物的反应性,人们能够比较显着降低的大环四酰胺供体容量对氢原子提取、氧原子转移等基本过程的影响,以及通过使用先前对更多富电子 TAML 系统的研究进行电子转移。在这里,我们证明了氧化铁(V)形式 3c 可以通过处理 [Fe{4-NO2C6H3-1,2-(N2COCMe2N3CO)2CF2(Fe-N2)(Fe-N3)}(OH2)]-( 1c) 在 –40 °C 下使用 MeCN 中的间氯过苯甲酸 (mCPBA)。氧化通过μ-氧代[铁(IV)] 2 二聚体的中间体进行。mCPBA 的 FeIII→FeV 转化的总体速率对于 1c 来说略快于其较少富电子前体 [Fe{C6H4-1,2-(N1COCMe2
    DOI:
    10.1002/ejic.201500001
  • 作为试剂:
    描述:
    四聚乙醛sodium hypochlorite氘代盐酸 作用下, 以 aq. phosphate buffer 、 重水 为溶剂, 反应 80.0h, 生成 溶剂黄146
    参考文献:
    名称:
    Homogeneous Catalysis Under Ultradilute Conditions: TAML/NaClO Oxidation of Persistent Metaldehyde
    摘要:
    TAML activators enable homogeneous oxidation catalysis where the catalyst and substrate (S) are ultradilute (pM-low mu M) and the oxidant is very dilute (high nM-low mM). Water contamination by exceptionally persistent micropollutants (MPs), including metaldehyde (Met), provides an ultradilute catalysis The lour MP concentrations decrease throughout catalysis ideal space for determining the characteristics and utilitarian limits of this With S oxidation (k(II)) and catalyst inactivation (k(i)) competing for the active catalyst. The percentage of substrate converted (%Cvn) can be increased by discovering methods to increase k(II)/k(i) Here we show that NaClO extends catalyst lifetime to increase the Met turnover number (TON) 3-fold compared with H2O2, highlighting the importance of oxidant choice as a design tool in TAML systems. Met oxidation studies (pH 7, D2O, 0.01 M phosphate, 25 degrees C) monitored by H-1 NMR spectroscopy show benign acetic acid as the only significant product. Analysis of TAML/NaClO treated Met solutions employing successive identical catalyst doses revealed that the processes can be modeled by the recently published relationship between the initial and final [S] (S-0 and S-infinity, respectively), the initial [catalyst] (Fe-Tot) and k(II)/k(i). Consequently, this study establishes that Delta S is proportional to So and that the %Cvn is conserved across all catalyst doses in multicatalyst-dose processes because the rate of the k(II) process depends on [5] while that of the ki process does not. A general tool for determining the FeTot required to effect a desired %Cvn is presented. Examination of the dependence of TON on k(II)/k(i) and Fe-Tot at a fixed S-0 indicates that for any TAML process employing Fe-Tot < 1 x 10(-6) M, small catalyst doses are not more efficient than one large dose.
    DOI:
    10.1021/jacs.6b11145
点击查看最新优质反应信息

文献信息

  • Structural, Mechanistic, and Ultradilute Catalysis Portrayal of Substrate Inhibition in the TAML–Hydrogen Peroxide Catalytic Oxidation of the Persistent Drug and Micropollutant, Propranolol
    作者:Yogesh Somasundar、Longzhu Q. Shen、Alexis G. Hoane、Liang L. Tang、Matthew R. Mills、Abigail E. Burton、Alexander D. Ryabov、Terrence J. Collins
    DOI:10.1021/jacs.8b08108
    日期:2018.9.26
    TAML activators enable unprecedented, rapid, ultradilute oxidation catalysis where substrate inhibitions might seem improbable. Nevertheless, while TAML/H2O2 rapidly degrades the drug propranolol, a micropollutant (MP) of broad concern, propranolol is shown to inhibit its own destruction under concentration conditions amenable to kinetics studies ([propranolol] = 50 mu M). Substrate inhibition manifests as a decrease in the second-order rate constant k(I) for H2O2 oxidation of the resting Fe-III-TAML (RC) to the activated catalyst (AC), while the second-order rate constant k(II) for attack of AC on propranolol is unaffected. This kinetics signature has been utilized to develop a general approach for quantifying substrate inhibitions. Fragile adducts [propranolol, TAML] have been isolated and subjected to ESI-MS, florescence, UV-vis, FTIR, H-1 NMR, and IC examination and DFT calculations. Propranolol binds to Fe-III-TAMLs via combinations of noncovalent hydrophobic, coordinative, hydrogen bonding, and Coulombic interactions. Across four studied TAMLs under like conditions, propranolol reduced k(I) 4-32-fold (pH 7, 25 degrees C) indicating that substrate inhibition is controllable by TAML design. However, based on the measured k(I) and calculated equilibrium constant K for propranolol-TAML binding, it is possible to project the impact on k(I) of reducing [propranolol] from 50 mu M to the ultradilute regime typical of MP contaminated waters (<= 2 ppb, <= 7 nM for propranolol) where inhibition nearly vanishes. Projecting from 50 mu M to higher concentrations, propranolol completely inhibits its own oxidation before reaching mM concentrations. This study is consistent with prior experimental findings that substrate inhibition does not impede TAML/H2O2 destruction of propranolol in London wastewater while giving a substrate inhibition assessment tool for use in the new field of ultradilute oxidation catalysis.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫