摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

9H-selenoxanthene-9-thione | 80683-67-6

中文名称
——
中文别名
——
英文名称
9H-selenoxanthene-9-thione
英文别名
selenoxanthene-9-thione
9H-selenoxanthene-9-thione化学式
CAS
80683-67-6
化学式
C13H8SSe
mdl
——
分子量
275.233
InChiKey
GDHYTGOYUYKSPJ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.78
  • 重原子数:
    15
  • 可旋转键数:
    0
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    32.1
  • 氢给体数:
    0
  • 氢受体数:
    1

反应信息

  • 作为反应物:
    描述:
    9H-selenoxanthene-9-thione一水合肼 作用下, 以 为溶剂, 反应 2.0h, 以97%的产率得到9H-selenoxanthen-9-one hydrazone
    参考文献:
    名称:
    Levy, Amalia; Biedermann, P. Ulrich; Cohen, Shmuel, Journal of the Chemical Society. Perkin Transactions 2 (2001), 2000, # 4, p. 725 - 735
    摘要:
    DOI:
  • 作为产物:
    描述:
    9H-硒基氧杂蒽-9-酮劳森试剂 作用下, 以 为溶剂, 生成 9H-selenoxanthene-9-thione
    参考文献:
    名称:
    Variations of bistricyclic aromatic enes: mono-bridged tetraarylethene naphthologs
    摘要:
    已报告了单桥连(X = –, O, S, Se 和 Te)四芳乙烯(BAE-1s)11–25 的萘类似物的合成、分子和晶体结构、核磁共振光谱研究以及密度泛函理论(DFT)计算研究,这些化合物具有α,α-、β,β- 和α,β-二萘基取代基。BAE-1s 是通过巴顿–凯洛格的两次挤压从相应的硫族钟化合物和二萘基甲烯反应物制备的。通过二维相关光谱(DQF-COSY、HSQC、HMBC 和 NOESY)对11–25的1H-和13C-NMR谱进行了完全归属。相应的中间体,硫杂环33–47也被分离(38除外),并确定了它们的分子和晶体结构。BAE-1s 12–15、20及22–25的分子结构采纳了折叠扭曲的构象,具有相当折叠的(φ = 30°–57°)三环基团。α,α-和α,β-二萘基衍生物的拥挤程度大于β,β-二萘基衍生物。由于萘基取代基的存在,C9=C9'周围的拥挤导致的立体应变通过绕着连接α-萘基和β-萘基基团与C9'的单键扭转得以缓解。1H-NMR谱显示了11–25的H2、H7受到屏蔽,同时α,α-二萘基取代的BAE-1s 13–15的H8'、H8''遭受明显去屏蔽,与β,β-二萘基取代的BAE-1s 16–20形成对比。H2、H7的向上移动频移暗示这些氢处于对立萘环平面上方的构象。对11–20进行了B3LYP/6-31G(d)和B3LYP/SDD的DFT计算。结果显示,未带硫族桥的BAE-1s 11和16的全局最小值为扭曲的(–sc,–sc)-C 2-t构象。带硫族桥的BAE-1s的全局最小值分别为α,α-二萘基取代的BAE-1s 12–15的折叠扭曲(–sc,–ac)-C 1-ft构象和β,β-二萘基取代的BAE-1s 17–20的反向或同向(–sc,ac)-C 1-ft构象。注意到α,α-二萘基与β,β-二萘基衍生物之间的显著差异。经过色散修正的B3LYP计算显著稳定了α,α-二萘基衍生物,相对β,β-二萘基衍生物。根据分子X光结构和B3LYP优化几何结构得到的BAE-1 11–15和20的几何参数良好一致。
    DOI:
    10.1007/s11224-014-0482-7
点击查看最新优质反应信息

文献信息

  • Selenium- and tellurium-bridged heteromerous overcrowded bistricyclic aromatic enes with central six-member and seven-member rings
    作者:Amalia Levy、Shmuel Cohen、Sergey Pogodin、Israel Agranat
    DOI:10.1007/s11224-015-0675-8
    日期:2015.12
    A series of selenium-bridged and tellurium-bridged heteromerous bistricyclic aromatic enes (BAEs) 15–25 with six-member and seven-member central rings have been synthesized by Barton–Kellogg olefination, twofold extrusion coupling method between tricyclic aromatic thiones and tricyclic aromatic diazo derivatives. The crystal structures of thioxanthenylidene-anthracenone (15), selenoxanthenylidene-anthracenone
    通过Barton-Kellogg烯化、三环芳硫酮和三环芳烃之间的双重挤出偶联方法合成了一系列具有六元和七元中心环的硒桥连和碲桥连杂双三环芳香烯(BAE)15-25重氮衍生物。测定了噻吨亚基-蒽酮 (15)、硒代亚蒽基-蒽酮 (20) 和碲载氧杂蒽-蒽酮 (21) 的晶体结构。21 的有序晶体结构显示出非常高的碲亚基部分折叠度 (58.5°) 和非常短的分子内 Te…C9' 接触距离,表明 >20% 渗透,这可能反映了二次非键合相互作用和缺乏芳香族碲芘-蒽酚贡献。BAE 经受了 1H-、13C-、77Se-、和 125Te-NMR 光谱研究。1H-NMR 谱表明溶液中存在反折叠构象。相对于二硒氧杂蒽 (7) 和二碲氧杂蒽 (8) 的同源 BAE 的相应光谱,在 20 和 21 中测量到的明显低场 77Se 和 125Te-NMR 位移可能是由于 Se 和 Te 桥与反折叠构象中的中心烯。这种去屏蔽效应在
  • Spin adducts of group IVB organometallic radicals with Thioketones. an esr study
    作者:Angelo Albert、Francesco Paolo Colonna、Maurizio Guerra、Bianca F. Bonini、Germana Mazzanti、Zoltàn Dinya、Gian Franco Pedulli
    DOI:10.1016/s0022-328x(00)81027-x
    日期:1981.11
    The radical adducts resulting from the reaction between group IVB organometallic radicals MR3 (M = Si, Ge, Sn; R = alkyl or aryl) and a number of thioketones of the chromone and flavone series have been investigated by ESR spectroscopy. The spectral parameters obtained for these species have been compared with those of similar adducts of the corresponding ketones. Both classes of radicals adopt an
    已经通过ESR光谱研究了IVB族有机金属自由基MR 3(M = Si,Ge,Sn; R =烷基或芳基)与许多色酮和黄酮系列的硫酮之间的反应产生的自由基加合物。已将针对这些物质获得的光谱参数与相应酮的类似加合物的光谱参数进行了比较。这两类自由基均采用正交构象,并且前者和后者的顺磁性物种之间的差异可以通过氧和硫的不同电负性来解释。同样解释了用硫或硒原子取代杂环氧对自旋密度分布的影响。在模型系统CH 2 XSiH上进行了INDO计算3(X = O,S)。
  • Spin adducts between thioketones and phosphorus centred radicals
    作者:Angelo Alberti、Massimo Benaglia、M.Catherine Depew、W.Grant McGimpsey、Gian Franco Pedulli、Jeffrey K.S. Wan
    DOI:10.1016/s0040-4020(01)85999-8
    日期:1988.1
    The paramagnetic adducts between a variety of phosphinyl, phosphonyl or thiophosphonyl radicals and thiobenzophenone, 9,H-xanthen-9-thione, 9, H-thiaxanthen-9-thione, 9, H-selenaxanthen-9-thione and di-tert-butyl thioketone have been generated and studied by means of ESR spectroscopy. Attention has been focused on the variations of(31P) with the nature of the ligands L in the attacking PLn radicals
    各种次膦酰基,膦酰基或硫代膦酰基基团与硫代二苯甲酮,9,H-黄嘌呤-9-硫酮,9,H-噻吨黄酮-9-硫酮,9,H-硒代黄嘌呤-9-硫酮和二叔-苯基之间的顺磁加合物通过ESR光谱法已经生成并研究了丁基硫代酮。注意力已经集中在(31 P)随进攻的PL n基团中的配体L的性质以及硫代羰基底物的性质而变化。
  • Overcrowded 1,8-diazafluorenylidene-chalcoxanthenes. Introducing nitrogens at the fjord regions of bistricyclic aromatic enes
    作者:Amalia Levy、Shmuel Cohen、Israel Agranat
    DOI:10.1039/b303041e
    日期:——
    The effects of introducing nitrogen atoms in the fjord regions and chalcogen bridges on the conformations of overcrowded bistricyclic aromatic enes (1, X ≠ Y) (BAEs) were studied. 9-(9′H-1′,8′-Diazafluoren-9′-ylidene)-9H-thioxanthene (12), 9-(9H-1′, 8′-diazafluoren-9′-ylidene)-9H-selenoxanthene (13), 9-(9′H-1′,8′-diazafluoren-9′-ylidene)-9H-telluroxanthene (14), 9-(9′H-1′,8′-fluoren-9-ylidene)-9H-xanthene (15) and 9-(9′H-1′,8′-fluoren-9′-ylidene)-9H-fluorene (16) were synthesized by two-fold extrusion coupling reactions of 1,8-diaza-9H-fluoren-9-one (19)/chalcoxanthenthiones (24–27) (or /9H-fluorene-9-thione (30)). The 1′,8′-diazafluoren-9-ylidene-chalcoxanthenes (11) were compared with the respective fluoren-9-ylidene-chalcoxanthenes (10). The structures of 12–16 were established by 1H, 13C, 77Se, and 125Te NMR spectroscopies. The crystal and molecular structures of 12–14 were determined by X-ray analysis. The yellow molecules of 12–14 adopted mono-folded conformations with folding dihedrals in the chalocoxanthylidene moieties of 62.7° (12), 62.4° (13) and 59.9° (14). The folding dihedrals in the respective 1′,8′-diazafluorenylidene moieties were very small, ca. 2°, compared with 10.2/8.0° in (9′H-fluoren-9′-ylidene)-9H-selenoxanthene (7). A 5° pure twist of C9C9′ in 14 is noted. The degrees of overcrowding in the fjord regions of 12–14 (intramolecular non-bonding distances) were relatively small. The degrees of pyramidalization of C9 and C9′ were 17.0/3.0° (12), 17.4/2.4° (13) and 2.2/2.2° (14). These high values in 12 and 13 stem from the resistance of the 1,8-diazafluorenylidene moiety to fold and from the limits in the degrees of folding of the thioxanthylidene and selenoxanthylidene moieties (due to shorter S10–C4a/S10–C10a and Se10–C4a/Se10–C10a bonds, as compared with the respective Te–C bonds in 14). The molecules of 15 and 16 adopt twisted conformations, a conclusion drawn from the 1H NMR chemical shifts of the fjord regions protons (H1 and H8) at 8.70 (15) and 9.00 ppm (16) and from their colors and UV/VIS spectra: 15 is purple (λmax = 521 nm) and 16 is orange–red. A comparison of the NMR spectra of 11 and 10 (Δδ = δ(11) – δ(10)) showed substantial downfield shifts of 0.56–0.62 ppm of the fjord regions protons of twisted 15 and 16: Δδ (C9) were negative (upfield): −4.0 (12), −3.7 (13), −3.4 (14), −7.1 (15), −5.0 ppm (16), while Δδ (C9′) were positive (downfield) = +6.8 (12), +6.5 (13), +5.8 (14), +11.7 (15), +7.7 ppm (16). In 15, Δδ (C9) – Δδ (C9′) = +18.8 ppm, attributed to a push–pull character and significant contributions of zwitterionic structures in the twisted conformation. The 77Se and 125Te NMR signals of 13 and 14 were shifted upfield relative to the respective fluorenylidene-chalcoxanthene derivatives: Δδ77Se = 17.2 ppm and Δδ125Te = 22.0 ppm. The presence of the nitrogen atoms (N1′ and N8′) in 13 and 14 causes shielding of the selenium and tellurium nuclei.
    在峡湾区域引入氮原子以及硫族桥对过度拥挤的双环芳香烯(1,X ≠ Y)(BAEs)构象的影响进行了研究。通过两步挤出耦合反应合成了9-(9′H-1′,8′-二氮荧光素-9′-亚烯基)-9H-硫茚(12)、9-(9H-1′,8′-二氮荧光素-9′-亚烯基)-9H-硒茚(13)、9-(9′H-1′,8′-二氮荧光素-9′-亚烯基)-9H-碲茚(14)、9-(9′H-1′,8′-荧光素-9-亚烯基)-9H-茚(15)和9-(9′H-1′,8′-荧光素-9′-亚烯基)-9H-荧光烯(16),反应物为1,8-二氮-9H-荧光素-9-酮(19)/二硫茚(24–27)或/9H-荧光烯-9-硫(30)。将1′,8′-二氮荧光素-9-亚烯基-二硫茚(11)与相应的荧光素-9-亚烯基-二硫茚(10)进行了比较。通过1H、13C、77Se和125Te NMR光谱确定了12–16的结构。12–14的晶体和分子结构通过X射线分析确定。黄色分子12–14呈现单重折叠构象,在二硫茚基团中的折叠二面角分别为62.7°(12)、62.4°(13)和59.9°(14)。相应的1′,8′-二氮荧光素基团的折叠二面角相对较小,约为2°,而在(9′H-荧光素-9′-亚烯基)-9H-硒茚(7)中为10.2/8.0°。在14中注意到C9C9′有5°的纯扭曲。12–14的峡湾区域拥挤程度(分子内非键合距离)相对较小。C9和C9′的金字塔化程度分别为17.0/3.0°(12)、17.4/2.4°(13)和2.2/2.2°(14)。12和13中的较高数值源于1,8-二氮荧光素基团折叠的抵抗性以及二硫茚基团和硒茚基团的折叠程度的限制(由于S10–C4a/S10–C10a和Se10–C4a/Se10–C10a键较短,与14中的相应Te–C键相比)。15和16的分子呈现扭曲构象,这一结论根据峡湾区域质子的1H NMR化学位移(H1和H8)为8.70(15)和9.00 ppm(16)以及它们的颜色和UV/VIS光谱得出:15呈紫色(λmax = 521 nm),16为橙红色。对11和10的NMR光谱进行比较(Δδ = δ(11) - δ(10))显示,扭曲的15和16的峡湾区域质子明显向下移位0.56–0.62 ppm:Δδ (C9) 为负(向上移):−4.0 (12)、−3.7(13)、−3.4(14)、−7.1(15)、−5.0 ppm(16),而Δδ (C9′) 为正(向下移)= +6.8(12)、+6.5(13)、+5.8(14)、+11.7(15)、+7.7 ppm(16)。在15中,Δδ (C9) - Δδ (C9′) = +18.8 ppm,归因于推拉特征和扭曲构象中两性离子结构的显著贡献。13和14的77Se和125Te NMR信号相对于各自的荧光素-二硫茚衍生物向上移位:Δδ77Se = 17.2 ppm 和Δδ125Te = 22.0 ppm。13和14中氮原子(N1′和N8′)的存在导致对硒和碲核的屏蔽效应。
  • Stereochemistry of selenium- and tellurium-bridged heteromerous bistricyclic aromatic enes. The fluorenylidenechalcoxanthene series
    作者:Amalia Levy、P. Ulrich Biedermann、Shmuel Cohen、Israel Agranat
    DOI:10.1039/b104858a
    日期:2001.11.29
    The effects of selenium and tellurium bridges on the conformations and dynamic stereochemical behavior of heteromerous bistricyclic aromatic enes (1) were studied. 9-(9′H-Fluoren-9′-ylidene)-9H-selenoxanthene (9) and 9-(9′H-fluoren-9′-ylidene)-9H-telluroxanthene (10) were synthesized, applying Barton's two-fold extrusion diazo–thione coupling method, which is especially suited for heteromerous 1. The isopropyl derivatives 14, 15 and the benzannulated derivatives 16, 17, and 18 were prepared analogously. The structures of 9, 10, 14, 15, and 16–18 were established by 1H, 13C, 77Se, and 125Te NMR spectroscopy and in the cases of 9 and 10 also by X-ray analysis. The molecules of 9 and 10 adopted anti-folded and folded conformations with 56.3/62.0° and 10.2/8.0° (9) and 63.6 and 2.2° (10) folding dihedrals, higher than in 7 and 8. The degrees of pyramidalization of C9 and C9′ were 2.8/3.9° and 0.9/2.1° (9) and 8 and 15° (10). Considerable overcrowding was evident in the short Se10⋯C9 and Te10⋯C9 contact distances in 9 and 10. The crystal structures of 10 indicated relatively short intermolecular Te⋯Te distances (408 pm). The 13C NMR chemical shifts of 9, 10, 9-(9′H-fluoren-9′-ylidene)-9H-xanthene (12) and 9-(9′H-fluoren-9′-ylidene)-9H-thioxanthene (13) indicated a variation in C9 of the chalcoxanthenylidene moiety, ascribed to through space interactions of Se, Te and S with C9. The 77Se and 125Te NMR signals of 9–10 and 14–17 were shifted downfield relative to the homomerous 7 and 8. A DNMR study of 14 and 15 gave ΔGc‡ (conformational inversion) = 14.4 (14) and 19.4 kcal mol−1 (15) and ΔGc‡ (E,Z-topomerizations) > 21.6 kcal mol−1, indicating an increase of ΔGc‡ in the fluorenylidenechalcoxanthenes series (11): O < S < Se < Te. The fluorenylidene-derived 1 were found to show distinct behavior for conformational inversions and E,Z-isomerizations. Semiempirical PM3 calculations of 9 and 10 indicated that unevenly anti-folded conformations were most stable. Conformational inversions of 9 and 10 proceed via the twisted transition states corresponding to calculated barriers of 14.8 and 21.6 kcal mol−1 in excellent agreement with experiment. The E,Z-isomerizations proceed via orthogonally twisted biradical transition states with predicted barriers of 27.0 and 34.0 kcal mol−1 for 9 and 10, respectively.
    研究了硒桥和碲桥对异构双环芳香烯(1)的构象和动态立体化学行为的影响。采用特别适用于异构体 1 的 Barton 两倍挤压重氮-硫酮偶联法合成了 9-(9′H-芴-9′-亚基)-9H-硒氧蒽 (9) 和 9-(9′H-芴-9′-亚基)-9H-碲氧蒽 (10)。异丙基衍生物 14、15 和苯并衍生物 16、17 和 18 的制备方法类似。9、10、14、15 和 16-18 的结构是通过 1H、13C、77Se 和 125Te NMR 光谱确定的,9 和 10 的结构还通过 X 射线分析确定。9 号和 10 号分子采用反折叠和折叠构象,折叠二面分别为 56.3/62.0° 和 10.2/8.0°(9 号)以及 63.6 和 2.2°(10 号),高于 7 号和 8 号分子。C9 和 C9′ 的金字塔化程度分别为 2.8/3.9° 和 0.9/2.1° (9)以及 8 和 15° (10)。在 9 和 10 中,Se10⋯C9 和 Te10⋯C9 的短接触距离明显过度拥挤。10 的晶体结构显示分子间 Te⋯Te 的距离相对较短(408 pm)。9、10、9-(9′H-芴-9′-亚基)-9H-氧杂蒽 (12) 和 9-(9′H-芴-9′-亚基)-9H-硫杂蒽 (13) 的 13C NMR 化学位移表明,由于 Se、Te 和 S 与 C9 的通空间相互作用,联苯甲醛的 C9 发生了变化。相对于同源的 7 和 8,9-10 和 14-17 的 77Se 和 125Te NMR 信号发生了下移。对 14 和 15 进行的 DNMR 研究得出ΔGc‡(构象反转)= 14.4(14)和 19.4 kcal mol-1(15),ΔGc‡(E,Z-拓扑)> 21.6 kcal mol-1,这表明ΔGc‡ 在亚芴基链烷系列中有所增加 (11):O < S < Se < Te。研究发现,由亚芴衍生的 1 在构象反转和 E,Z-异构化方面表现出不同的行为。对 9 和 10 的半经验 PM3 计算表明,不均匀的反折叠构象最为稳定。9 和 10 的构象反转是通过扭曲的过渡态进行的,其计算障碍分别为 14.8 和 21.6 kcal mol-1,与实验结果非常吻合。9和10的E,Z-异构化是通过正交扭曲的双拉德过渡态进行的,预测障碍分别为27.0和34.0 kcal mol-1。
查看更多

同类化合物

2,9-二(2-苯乙基)蒽并[2,1,9-DEF:6,5,10-D’E’F’]二异喹啉-1,3,8,10(2H,9H)-四酮 (βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-(+)-5,5'',6,6'',7,7'',8,8''-八氢-3,3''-二叔丁基-1,1''-二-2-萘酚,双钾盐 (S)-盐酸沙丁胺醇 (S)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2-N-Fmoc-氨基甲基吡咯烷盐酸盐 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-3,3''-双([[1,1''-联苯]-4-基)-[1,1''-联萘]-2,2''-二醇 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,5R)-3,3a,8,8a-四氢茚并[1,2-d]-1,2,3-氧杂噻唑-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aS,8aR)-2-(吡啶-2-基)-8,8a-二氢-3aH-茚并[1,2-d]恶唑 (3aS,3''aS,8aR,8''aR)-2,2''-环戊二烯双[3a,8a-二氢-8H-茚并[1,2-d]恶唑] (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3S,3aR)-2-(3-氯-4-氰基苯基)-3-环戊基-3,3a,4,5-四氢-2H-苯并[g]吲唑-7-羧酸 (3R,3’’R,4S,4’’S,11bS,11’’bS)-(+)-4,4’’-二叔丁基-4,4’’,5,5’’-四氢-3,3’’-联-3H-二萘酚[2,1-c:1’’,2’’-e]膦(S)-BINAPINE (3-三苯基甲氨基甲基)吡啶 (3-[(E)-1-氰基-2-乙氧基-2-hydroxyethenyl]-1-氧代-1H-茚-2-甲酰胺) (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,4S)-Fmoc-4-三氟甲基吡咯烷-2-羧酸 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,3R)-3-(叔丁基)-2-(二叔丁基膦基)-4-甲氧基-2,3-二氢苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2R,2''R,3R,3''R)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2-硝基苯基)磷酸三酰胺 (2-氯-6-羟基苯基)硼酸 (2-氟-3-异丙氧基苯基)三氟硼酸钾 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1α,1'R,4β)-4-甲氧基-5''-甲基-6'-[5-(1-丙炔基-1)-3-吡啶基]双螺[环己烷-1,2'-[2H]indene (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1R,1′R,2S,2′S)-2,2′-二叔丁基-2,3,2′,3′-四氢-1H,1′H-(1,1′)二异磷哚