摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

heptakis(6-deoxy-6-iodo)cyclomaltoheptaose | 30754-23-5

中文名称
——
中文别名
——
英文名称
heptakis(6-deoxy-6-iodo)cyclomaltoheptaose
英文别名
heptakis 6-deoxy-6-iodo-β-cyclodextrin;Heptakis-6-iodo-6-deoxy-beta-cyclodextrin;(1S,3S,5S,6S,8S,10S,11S,13S,15S,16S,18S,20S,21S,23S,25S,26S,28S,30S,31S,33S,35S,36R,37R,38R,39R,40R,41R,42R,43R,44R,45R,46R,47R,48R,49R)-5,10,15,20,25,30,35-heptakis(iodomethyl)-2,4,7,9,12,14,17,19,22,24,27,29,32,34-tetradecaoxaoctacyclo[31.2.2.23,6.28,11.213,16.218,21.223,26.228,31]nonatetracontane-36,37,38,39,40,41,42,43,44,45,46,47,48,49-tetradecol
heptakis(6-deoxy-6-iodo)cyclomaltoheptaose化学式
CAS
30754-23-5
化学式
C42H63I7O28
mdl
——
分子量
1904.28
InChiKey
YODKQJPYQJRHEQ-FOUAGVGXSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    218-222 °C
  • 沸点:
    1541.4±60.0 °C(Predicted)
  • 密度:
    2.245±0.06 g/cm3(Predicted)
  • 溶解度:
    溶于DMF、DMSO。不溶于水、甲醇、氯仿。
  • 稳定性/保质期:

    遵照规定使用和储存,则不会分解。

计算性质

  • 辛醇/水分配系数(LogP):
    -2.5
  • 重原子数:
    77
  • 可旋转键数:
    7
  • 环数:
    21.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    412
  • 氢给体数:
    14
  • 氢受体数:
    28

安全信息

  • 安全说明:
    S24/25
  • 海关编码:
    29400000
  • 危险性防范说明:
    P261,P264,P270,P271,P280,P301+P312,P302+P352,P304+P340,P305+P351+P338,P330,P332+P313,P337+P313,P362,P403+P233,P405,P501
  • 危险性描述:
    H302,H315,H319,H335
  • 储存条件:
    存放于阴凉干燥处。

SDS

SDS:8a414319225567d4ffe70c4ec101a5e0
查看
Name: Heptakis-6-Iodo-6-Deoxy--Cyclodextrin Material Safety Data Sheet
Synonym: None known
CAS: 30754-23-5
Section 1 - Chemical Product MSDS Name:Heptakis-6-Iodo-6-Deoxy--Cyclodextrin Material Safety Data Sheet
Synonym:None known

Section 2 - COMPOSITION, INFORMATION ON INGREDIENTS
CAS# Chemical Name content EINECS#
30754-23-5 Heptakis-6-Iodo-6-Deoxy--Cyclodextrin ca 100 unlisted
Hazard Symbols: None Listed.
Risk Phrases: None Listed.

Section 3 - HAZARDS IDENTIFICATION
EMERGENCY OVERVIEW
The toxicological properties of this material have not been fully investigated.
Potential Health Effects
Eye:
May cause eye irritation.
Skin:
May cause skin irritation.
Ingestion:
May cause irritation of the digestive tract. The toxicological properties of this substance have not been fully investigated.
Inhalation:
May cause respiratory tract irritation. The toxicological properties of this substance have not been fully investigated.
Chronic:
No information found.

Section 4 - FIRST AID MEASURES
Eyes: Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical aid.
Skin:
Get medical aid. Flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse.
Ingestion:
Never give anything by mouth to an unconscious person. Get medical aid. Do NOT induce vomiting. If conscious and alert, rinse mouth and drink 2-4 cupfuls of milk or water. Wash mouth out with water.
Inhalation:
Remove from exposure and move to fresh air immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid.
Notes to Physician:

Section 5 - FIRE FIGHTING MEASURES
General Information:
As in any fire, wear a self-contained breathing apparatus in pressure-demand, MSHA/NIOSH (approved or equivalent), and full protective gear. During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion.
Extinguishing Media:
Use agent most appropriate to extinguish fire. Use water spray, dry chemical, carbon dioxide, or appropriate foam.

Section 6 - ACCIDENTAL RELEASE MEASURES
General Information: Use proper personal protective equipment as indicated in Section 8.
Spills/Leaks:
Vacuum or sweep up material and place into a suitable disposal container. Clean up spills immediately, observing precautions in the Protective Equipment section. Avoid generating dusty conditions.
Provide ventilation.

Section 7 - HANDLING and STORAGE
Handling:
Wash thoroughly after handling. Use with adequate ventilation.
Minimize dust generation and accumulation. Avoid contact with eyes, skin, and clothing. Keep container tightly closed. Avoid ingestion and inhalation.
Storage:
Store in a tightly closed container. Store in a cool, dry, well-ventilated area away from incompatible substances.

Section 8 - EXPOSURE CONTROLS, PERSONAL PROTECTION
Engineering Controls:
Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use adequate ventilation to keep airborne concentrations low.
Exposure Limits CAS# 30754-23-5: Personal Protective Equipment Eyes: Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166.
Skin:
Wear appropriate protective gloves to prevent skin exposure.
Clothing:
Wear appropriate protective clothing to prevent skin exposure.
Respirators:
A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements or European Standard EN 149 must be followed whenever workplace conditions warrant respirator use.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

Physical State: Solid
Color: almost white
Odor: none reported
pH: Not available.
Vapor Pressure: Not available.
Viscosity: Not available.
Boiling Point: Not available.
Freezing/Melting Point: 220 deg C
Autoignition Temperature: Not applicable.
Flash Point: Not applicable.
Explosion Limits, lower: Not available.
Explosion Limits, upper: Not available.
Decomposition Temperature:
Solubility in water:
Specific Gravity/Density: >1.0
Molecular Formula:
Molecular Weight: 1904.27

Section 10 - STABILITY AND REACTIVITY
Chemical Stability:
Stable at room temperature in closed containers under normal storage and handling conditions.
Conditions to Avoid:
Incompatible materials, dust generation, excess heat.
Incompatibilities with Other Materials:
Oxidizing agents.
Hazardous Decomposition Products:
Carbon monoxide, irritating and toxic fumes and gases, carbon dioxide, hydrogen iodide.
Hazardous Polymerization: Has not been reported

Section 11 - TOXICOLOGICAL INFORMATION
RTECS#:
CAS# 30754-23-5 unlisted.
LD50/LC50:
Not available.
Carcinogenicity:
Heptakis-6-Iodo-6-Deoxy--Cyclodextrin - Not listed by ACGIH, IARC, or NTP.

Section 12 - ECOLOGICAL INFORMATION


Section 13 - DISPOSAL CONSIDERATIONS
Dispose of in a manner consistent with federal, state, and local regulations.

Section 14 - TRANSPORT INFORMATION

IATA
Not regulated as a hazardous material.
IMO
Not regulated as a hazardous material.
RID/ADR
Not regulated as a hazardous material.

Section 15 - REGULATORY INFORMATION

European/International Regulations
European Labeling in Accordance with EC Directives
Hazard Symbols: Not available.
Risk Phrases:
Safety Phrases:
S 24/25 Avoid contact with skin and eyes.
S 28A After contact with skin, wash immediately with
plenty of water.
S 37 Wear suitable gloves.
S 45 In case of accident or if you feel unwell, seek
medical advice immediately (show the label where
possible).
WGK (Water Danger/Protection)
CAS# 30754-23-5: No information available.
Canada
None of the chemicals in this product are listed on the DSL/NDSL list.
CAS# 30754-23-5 is not listed on Canada's Ingredient Disclosure List.
US FEDERAL
TSCA
CAS# 30754-23-5 is not listed on the TSCA inventory.
It is for research and development use only.


SECTION 16 - ADDITIONAL INFORMATION
N/A

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Thermal behaviour of a modified encapsulation agent
    摘要:
    我们通过 TG/DTG/DTA、傅立叶变换红外光谱以及 TG-FTIR 连接技术研究了庚基-6-碘-6-脱氧-beta-环糊精(HIDBCD)在惰性和氧化条件下的热行为。由于之前没有对 HIDBCD 的热行为进行过研究,我们将目标设定为研究在动态空气环境与氮气环境下,以 10 °C min-1 的升温速率分别升温至 500 ℃ 和 600 ℃ 的热降解过程。研究发现,空气中的降解过程是一步完成的,总质量损失率为 99.9%。TG/DTG/DTA-FTIR 的结果表明,这种环糊精的热行为可分为三个阶段,并提供了有关反应顺序和相关反应产物的更多信息。
    DOI:
    10.1007/s10973-014-3727-1
  • 作为产物:
    描述:
    β-环糊精 、 tetraphenylporphyrin 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 生成 heptakis(6-deoxy-6-iodo)cyclomaltoheptaose
    参考文献:
    名称:
    自组装的两亲环糊精的单分散纳米颗粒:用于封装和控制药物释放的可调节工具。
    摘要:
    环糊精(CDs)的选择性化学官能化是一种易于生产的两亲性大分子,具有可调节的自组织能力。本文中,定义明确的两亲CD衍生物的合成具有“裙型”结构,该结构在仲羟基边缘结合了长链脂肪酯和多种化学官能团(例如碘,溴,叠氮基,半胱氨酰或异硫氰酸根) )在伯羟基边缘。新的CD面部两亲物或它们的二元混合物的纳米沉淀产生了平均流体力学直径范围为100到240 nm的纳米颗粒,这些纳米颗粒在悬浮液中稳定了几个月。精确的尺寸 纳米颗粒的ζ电位和拓扑结构密切依赖于CD支架上的功能化模式。对于某些衍生物,证明了生物利用度差的药物(例如地西epa(DZ))的高效分子包封能力,药物释放曲线取决于制剂的类型(纳米球或纳米胶囊)。合成策略的效率和多功能性,以及利用纳米颗粒表面官能团的反应性的可能性,为从下而上的方法进一步操纵该系列两亲CD的载体能力提供了极好的机会。药物释放曲线取决于制剂的类型(纳米球或纳米胶囊)。合成策
    DOI:
    10.2174/157340612801216265
点击查看最新优质反应信息

文献信息

  • Synthesis of an MUC1 Glycopeptide Dendrimer Based on β-Cyclodextrin by Click Chemistry
    作者:Yan-Mei Li、Pu-Guang Chen、Zhi-Hua Huang、Zhan-Yi Sun、Qian-Qian Li、Yong-Xiang Chen、Yu-Fen Zhao
    DOI:10.1055/s-0036-1590796
    日期:2017.9
    Glycopeptide dendrimers are attractive candidates for biomedical applications. Here, an efficient method for preparing multivalent MUC1 glycopeptide dendrimers based on β-cyclodextrin is described. By using copper(I) bromide and thioanisole as a catalyst system, precisely defined heptavalent conjugates were efficiently obtained. Using this heptavalent glycopeptide dendrimer, we observed multivalent
    糖肽树枝状聚合物是生物医学应用的有吸引力的候选者。在这里,描述了一种基于β-环糊精制备多价 MUC1 糖肽树枝状聚合物的有效方法。通过使用溴化铜 (I) 和苯醚作为催化剂体系,可以有效地获得精确定义的七价共轭物。使用这种七价糖肽树状聚合物,我们观察到抗体和表位相互作用中识别和关联过程中的多价效应,这可能具有生物医学应用。
  • Inhibition of influenza virus infection by multivalent pentacyclic triterpene-functionalized per- O -methylated cyclodextrin conjugates
    作者:Zhenyu Tian、Longlong Si、Kun Meng、Xiaoshu Zhou、Yongmin Zhang、Demin Zhou、Sulong Xiao
    DOI:10.1016/j.ejmech.2017.03.087
    日期:2017.7
    inhibitory activity against influenza A/WSN/33 (H1N1) virus. Compound 28 showed the most potent anti-influenza activity with IC50 of 4.7 μM. The time-of-addition assay indicated that compound 28 inhibited the entry of influenza virus into host cell. Further hemagglutination inhibition (HI) and surface plasmon resonance (SPR) assays indicated that compound 28 tightly bound to influenza HA protein with a dissociation
    对流感血凝素 (HA) 三聚体表现出高结合亲和力的多价配体可以阻断 HA 与其唾液酸受体的相互作用。在这项研究中,使用 1, 3-偶极环加成点击反应设计并合成了一系列多价五环三萜功能化过-O-甲基化环糊精 (CD) 衍生物。基于细胞的分析表明,三种化合物(25、28 和 31)对甲型流感/WSN/33(H1N1)病毒表现出很强的抑制活性。化合物 28 显示出最有效的抗流感活性,IC50 为 4.7 μM。添加时间测定表明化合物28抑制流感病毒进入宿主细胞。进一步的血凝抑制 (HI) 和表面等离子体共振 (SPR) 分析表明,化合物 28 与流感 HA 蛋白紧密结合,解离常数 (KD) 为 4.0 μM。我们的结果证明了使用全氧甲基化 β-CD 作为支架设计多价化合物以破坏流感 HA 蛋白-宿主受体蛋白相互作用从而阻止流感病毒进入宿主细胞的策略。
  • Cyclodextrin-centred star polymers synthesized via a combination of thiol-ene click and ring opening polymerization
    作者:Qiang Zhang、Guang-Zhao Li、C. Remzi Becer、David M. Haddleton
    DOI:10.1039/c2cc33742h
    日期:——
    The synthesis of cyclodextrin-centred star polymers via thiol-ene addition of per-6-thio-β-cyclodextrin (CD-(SH)7) with vinyl terminated polymers is described. The obtained thiol-ene product was employed as an initiator for ring opening polymerization (ROP) of ε-caprolactone (ε-CL).
    本文描述了通过醇-烯加成反应,将6-代-β-环糊精(CD-(SH)7)与末端为乙烯的聚合物合成环糊精中心星形聚合物。所获得的醇-烯产物被用作ε-己内酯(ε-CL)开环聚合(ROP)的引发剂
  • Mono-benzimidazole functionalized β-cyclodextrins as supramolecular nanovalves for pH-triggered release of p-coumaric acid
    作者:Ting Wang、MingDong Wang、ChenDi Ding、JiaJun Fu
    DOI:10.1039/c4cc05677a
    日期:——

    Mono-benzimidazole functionalized β-cyclodextrins with self-complexation/decomplexation characteristics are used as supramolecular nanovalves to assemble mechanized silica nanoparticles, showing a pH-controlled release.

    苯并咪唑功能化的β-环糊精具有自组装/解组特性,可用作超分子纳米阀门,用于组装机械化二氧化硅纳米粒子,展示出受pH控制的释放。
  • Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers
    作者:Sananda Nag、Lisday Duarte、Emilie Bertrand、Véronique Celton、Mickaël Castro、Veena Choudhary、Philippe Guegan、Jean-François Feller
    DOI:10.1039/c4tb01041h
    日期:——
    A novel electronic nose system comprising functionalized β-cyclodextrin wrapped reduced graphene oxide (RGO) sensors with distinct ability of discrimination of a set of volatile organic compounds has been developed. Non-covalent modification of chemically functionalized cyclodextrin with RGO is carried out by using pyrene adamantane as a linker wherever necessary, in order to construct a supramolecular
    已经开发了一种新型的电子鼻系统,该系统包括功能化的β-环糊精包裹的还原型氧化石墨烯(RGO)传感器,该传感器具有区分一组挥发性有机化合物的独特能力。在必要时,通过使用pyr金刚烷作为连接基,用RGO对化学官能化的环糊精进行非共价修饰,以构建超分子组装体。利用环糊精的选择性化学修饰原理改变环糊精上的化学官能度。在本研究中,主体-客体包合物的形成能力和环糊精的可调化学功能以及石墨烯的高表面积和电导率的综合优势,
查看更多