摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

cryptophane-111 | 946078-66-6

中文名称
——
中文别名
——
英文名称
cryptophane-111
英文别名
9,11,29,31,41,43-Hexaoxadecacyclo[19.19.3.38,35.315,28.112,16.132,36.03,38.018,23.05,46.025,49]henpentaconta-1,3(38),5(46),6,8(47),12(51),13,15,18(23),19,21,25(49),26,28(48),32(44),33,35,39-octadecaene
cryptophane-111化学式
CAS
946078-66-6
化学式
C45H36O6
mdl
——
分子量
672.777
InChiKey
AVMAIVPEJPKDFH-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    >200 °C
  • 密度:
    1.265±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    11
  • 重原子数:
    51
  • 可旋转键数:
    0
  • 环数:
    20.0
  • sp3杂化的碳原子比例:
    0.2
  • 拓扑面积:
    55.4
  • 氢给体数:
    0
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    cryptophane-111N-溴代丁二酰亚胺(NBS) 作用下, 以 氯仿 为溶剂, 反应 312.0h, 以60%的产率得到
    参考文献:
    名称:
    Synthesis of a Functionalizable Water-Soluble Cryptophane-111
    摘要:
    The development of optimized xenon host systems is of crucial importance for the success of molecular imaging using hyperpolarized Xe-129 MRI. Cryptophane-111 is a promising candidate because of its encapsulation properties. The synthesis of cryptophane-111-based biosensors requires both water-solubilizing and chemically activatable groups. An expeditious synthesis of a water-soluble and functionalizable cryptophane-111 is described.
    DOI:
    10.1021/ol4012019
  • 作为产物:
    描述:
    溴氯甲烷10,15-dihydro-5H-tribenzo[a,d,g][9]annulene-2,7,12-triolcaesium carbonate 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 以11%的产率得到cryptophane-111
    参考文献:
    名称:
    A Cryptophane Core Optimized for Xenon Encapsulation
    摘要:
    The smallest cryptophane ever synthesized, cryptophane-1.1.1 (1), whose internal volume is estimated to be 81 A(3), exhibits the highest binding constant (10000 M-1 at 293 K) in organic solution for xenon encapsulation determined to date. The very slow kinetics of decomplexation on the NMR time scale results in an extremely sharp Xe-129 NMR signal for the Xe@1 complex, which shows an unexpected low-frequency shift. The free energy of activation for decomplexation of xenon at 293 K is Delta G(out) = 64.9 +/- 3 kJ mol(-1) (Delta H-out = 43.2 +/- 1.6 kJ mol(-1); Delta S-out = -74 +/- 3 J mol(-1) K-1). These properties suggest that the cryptophane core of 1 is optimized for use in sensing applications in combination with laser-polarized xenon.
    DOI:
    10.1021/ja073771c
点击查看最新优质反应信息

文献信息

  • A Water-Soluble Xe@cryptophane-111 Complex Exhibits Very High Thermodynamic Stability and a Peculiar <sup>129</sup>Xe NMR Chemical Shift
    作者:Robert M. Fairchild、Akil I. Joseph、K. Travis Holman、Heather A. Fogarty、Thierry Brotin、Jean-Pierre Dutasta、Céline Boutin、Gaspard Huber、Patrick Berthault
    DOI:10.1021/ja1071515
    日期:2010.11.10
    [(Cp*Ru)(6)1]Cl(6) ([2]Cl(6)). [2]Cl(6) exhibits a very high affinity for xenon in water, with a binding constant of 2.9(2) × 10(4) M(-1) as measured by hyperpolarized (129)Xe NMR spectroscopy. The (129)Xe NMR chemical shift of the aqueous Xe@[2](6+) species (308 ppm) resonates over 275 ppm downfield of the parent Xe@1 species in (CDCl(2))(2) and greatly broadens the practical (129)Xe NMR chemical shift
    已知的氙结合 (±)-cryptophane-111 (1) 已用六个 [(η(5)-C(5)Me(5))Ru(II)](+) ([Cp*Ru] (+)) 部分以 89% 的产率得到第一个水溶性cryptophane-111衍生物,即[(Cp*Ru)(6)1]Cl(6) ([2]Cl(6))。[2]Cl(6) 对水中的氙具有非常高的亲和力,结合常数为 2.9(2) × 10(4) M(-1),由超极化 (129)Xe NMR 光谱测量。含水 Xe@[2](6+) 物质 (308 ppm) 的 (129)Xe NMR 化学位移与 (CDCl(2))(2) 中母体 Xe@1 物质的 275 ppm 低场共振,并大大拓宽由氙结合分子主体提供的实用 (129) Xe NMR 化学位移范围。[2][CF(3)SO(3)](6)·xsolvent 和 0.75H(2)O@1·2CHCl(3) 的单晶结构揭示了cryptophane-111
  • Extreme Confinement of Xenon by Cryptophane-111 in the Solid State
    作者:Akil I. Joseph、Saul H. Lapidus、Christopher M. Kane、K. Travis Holman
    DOI:10.1002/anie.201409415
    日期:2015.1.26
    exceptionally stable, retaining xenon at temperatures of up to about 300 °C. The high kinetic stability is attributable not only to the high xenon affinity and cage‐like nature of the host, but also to the crystal packing of the clathrate, wherein each window of the molecular container is blocked by the bridges of adjacent containers, effectively imprisoning the noble gas in the solid state. The results highlight
    吸收,捕获和/或储存较重的稀有气体的固体是令人关注的,因为它们具有转化性稀有气体分离/生产,储存或回收技术的潜力。在这里,我们报告了一系列(±)-cryptophane-111(111)的氙气和cl气包合物的分离,晶体结构和热稳定性。一种三角晶形式,氙@ 111⋅ ÿ(溶剂)非常稳定,可在高达约300°C的温度下保留氙气。较高的动力学稳定性不仅归因于宿主的高氙亲和力和笼状性质,而且归因于包合物的晶体堆积,其中分子容器的每个窗口被相邻容器的桥所阻挡,从而有效地监禁固态的稀有气体。结果突出显示了具有固有微腔或零维孔的离散分子材料的潜力。
  • Temperature Controls Guest Uptake and Release from Zn<sub>4</sub>L<sub>4</sub> Tetrahedra
    作者:Dawei Zhang、Tanya K. Ronson、Songül Güryel、John D. Thoburn、David J. Wales、Jonathan R. Nitschke
    DOI:10.1021/jacs.9b07307
    日期:2019.9.18
    We report the preparation of triazatruxene-faced tetrahedral cage 1, which exhibits two diastereomeric configurations (T1 and T2) that differ in the handedness of the ligand faces relative to that of the octahedrally coordinated metal centers. At lower temperatures, T1 is favored, whereas T2 predominates at higher temperatures. Host-guest studies show that T1 binds small aliphatic guests, whereas T2 binds larger aromatic molecules, with these changes in binding preference resulting from differences in cavity size and degree of enclosure. Thus, by a change in temperature the cage system can be triggered to eject one bound guest and take up another.
  • Cryptophane-Xenon Complexes in Organic Solvents Observed through NMR Spectroscopy
    作者:Gaspard Huber、Lætitia Beguin、Hervé Desvaux、Thierry Brotin、Heather A. Fogarty、Jean-Pierre Dutasta、Patrick Berthault
    DOI:10.1021/jp807425t
    日期:2008.11.13
    The interaction of xenon with cryptophane derivatives is analyzed by NMR by using either thermal or hyperpolarized. noble gas. Twelve hosts differing by their stereochemistry, cavity size, and the nature and the number of the substituents on the aromatic rings have been included in the study, in the aim of extracting some clues for the optimization of Xe-129-NMR based biosensors derived from these cage molecules. Four important properties have been examined: xenon-host binding constant, in-out exchange rate of the noble gas, chemical shift, and relaxation of caged xenon. This work aims at understanding the main characteristics of the host-guest interaction in order to choose the best candidate for the biosensing approach. Moreover, rationalizing xenon chemical shift as a function of structural parameters would also help for setting up multiplexing applications. Xenon exhibits the highest affinity for the smallest cryptophane, namely cryptophane-111, and a long relaxation time inside it, convenient for conservation of its hyperpolarization. However, very slow in-out xenon exchange could represent a limitation for its future applicability for the biosensing approach, because the replenishment of the cage in laser-polarized xenon, enabling a further gain in sensitivity, cannot be fully exploited.
  • [EN] CRYPTOPHANE DERIVATIVES AND METHODS OF USE THEREOF<br/>[FR] DÉRIVÉS DE CRYPTOPHANE ET PROCÉDÉS D'UTILISATION DE CEUX-CI
    申请人:UNIV GEORGETOWN
    公开号:WO2012051323A2
    公开(公告)日:2012-04-19
    The present invention relates to the cryptophane derivatives of formula (I) capable of encapsulating small molecules such as noble gases for biological and environmental use. In particular, the invention relates to cryptophane derivatives with high affinity for xenon, which can be used as biosensors in clinical imaging. Formula (I)
查看更多

同类化合物

2,9-二(2-苯乙基)蒽并[2,1,9-DEF:6,5,10-D’E’F’]二异喹啉-1,3,8,10(2H,9H)-四酮 (βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-(+)-5,5'',6,6'',7,7'',8,8''-八氢-3,3''-二叔丁基-1,1''-二-2-萘酚,双钾盐 (S)-盐酸沙丁胺醇 (S)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2-N-Fmoc-氨基甲基吡咯烷盐酸盐 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-3,3''-双([[1,1''-联苯]-4-基)-[1,1''-联萘]-2,2''-二醇 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,5R)-3,3a,8,8a-四氢茚并[1,2-d]-1,2,3-氧杂噻唑-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aS,8aR)-2-(吡啶-2-基)-8,8a-二氢-3aH-茚并[1,2-d]恶唑 (3aS,3''aS,8aR,8''aR)-2,2''-环戊二烯双[3a,8a-二氢-8H-茚并[1,2-d]恶唑] (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3S,3aR)-2-(3-氯-4-氰基苯基)-3-环戊基-3,3a,4,5-四氢-2H-苯并[g]吲唑-7-羧酸 (3R,3’’R,4S,4’’S,11bS,11’’bS)-(+)-4,4’’-二叔丁基-4,4’’,5,5’’-四氢-3,3’’-联-3H-二萘酚[2,1-c:1’’,2’’-e]膦(S)-BINAPINE (3-三苯基甲氨基甲基)吡啶 (3-[(E)-1-氰基-2-乙氧基-2-hydroxyethenyl]-1-氧代-1H-茚-2-甲酰胺) (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,4S)-Fmoc-4-三氟甲基吡咯烷-2-羧酸 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,3R)-3-(叔丁基)-2-(二叔丁基膦基)-4-甲氧基-2,3-二氢苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2R,2''R,3R,3''R)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2-硝基苯基)磷酸三酰胺 (2-氯-6-羟基苯基)硼酸 (2-氟-3-异丙氧基苯基)三氟硼酸钾 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1α,1'R,4β)-4-甲氧基-5''-甲基-6'-[5-(1-丙炔基-1)-3-吡啶基]双螺[环己烷-1,2'-[2H]indene (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1R,1′R,2S,2′S)-2,2′-二叔丁基-2,3,2′,3′-四氢-1H,1′H-(1,1′)二异磷哚