摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

syn-iso-pimara-7,15-diene | 107983-51-7

中文名称
——
中文别名
——
英文名称
syn-iso-pimara-7,15-diene
英文别名
Syn-isopimara-7,15-diene;(2S,4aR,4bS,8aS)-2-ethenyl-2,4b,8,8-tetramethyl-3,4,4a,5,6,7,8a,9-octahydro-1H-phenanthrene
syn-iso-pimara-7,15-diene化学式
CAS
107983-51-7
化学式
C20H32
mdl
——
分子量
272.474
InChiKey
VCOVNILQQQZROK-LCLWPZTBSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    6.8
  • 重原子数:
    20
  • 可旋转键数:
    1
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.8
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

反应信息

  • 作为产物:
    描述:
    (9β)-18-(Phenylthio)isopimara-7,15-diene 在 lithium-sodium alloy 、 作用下, 以 四氢呋喃 为溶剂, 反应 1.0h, 以74%的产率得到syn-iso-pimara-7,15-diene
    参考文献:
    名称:
    Partial synthesis of 9,10-syn-diterpenes via tosylhydrazone reduction: (-)-(9.beta.)-pimara-7,15-diene and (-)-(9.beta.)-isopimaradiene
    摘要:
    (9-β)-坝沙烯-7,15-二烯(3)及其C-13表式异构体(4)是从水稻中产生的植保素类木菠萝烯(1和2)生物合成中的一个中间体。3和4从甲基巴沙和异巴沙-8,15-二烯-18酸(8b和8a)中合成。铬酸-二吡啶配合物对8a和8b以及它们的二烯烃15a和15b进行邻位氧化得到8,15-二烯-7-酮类化合物-9a、9b、16a和16b(35-54%产率)。用液氨-锂对9a、16a和16b进行还原,主要产率获得trans,anti,trans-异巴沙和巴沙-15-烯-7-酮(10,17a和17b)。相比之下,使用邻苯二酚硼烷还原9a和9b的犀角腙,得到具有9,10-顺式立体结构的甲基(9-β)-异巴沙-7,15-二烯-20酸和甲基(9-β)-巴沙-7,15-二烯-20酸(23a和23b)。通过羧酸基团转化为甲基基团得到这两种二烯烃的亲本化合物。合作研究发现,3是用紫外处理过的水稻粗酶提取液培养(E,E,E)-瑞香龙脑二磷酸酯后产生的五种二烯烃中的一种。
    DOI:
    10.1021/jo00043a013
点击查看最新优质反应信息

文献信息

  • Functional characterization of wheat ent-kaurene(-like) synthases indicates continuing evolution of labdane-related diterpenoid metabolism in the cereals
    作者:Ke Zhou、Meimei Xu、Mollie Tiernan、Qian Xie、Tomonobu Toyomasu、Chizu Sugawara、Madoka Oku、Masami Usui、Wataru Mitsuhashi、Makiko Chono、Peter M. Chandler、Reuben J. Peters
    DOI:10.1016/j.phytochem.2012.08.021
    日期:2012.12
    gibberellin biosynthesis is evident from the relevant expanded and functionally diverse family of ent-kaurene synthase-like (KSL) genes found in rice the (OsKSLs). Herein reported is the biochemical characterization of a similarly expansive family of KSL from wheat (the TaKSLs). In particular, beyond ent-kaurene synthases (KS), wheat also contains several biochemically diversified KSLs. These react either
    小麦 (Triticum aestivum) 和水稻 (Oryza sativa) 是农业上最重要的两种谷类作物。众所周知,大米可以产生许多用作植物抗毒素和/或化感物质的二萜类天然产物。具体来说,这些是与劳丹脂相关的二萜类化合物,源自特征性劳丹二烯基/共聚二磷酸 (CPP),其与赤霉素生物合成的生物合成关系从相关的扩展和功能多样的 ent-kaurene 合酶 (KSL) 基因家族中发现大米(OsKSLs)。本文报道了来自小麦的类似广泛的 KSL 家族(TaKSL)的生化特征。特别是,除了 ent-kaurene 合酶 (KS),小麦还包含几种生化多样化的 KSL。它们与赤霉素生物合成中常见的 ent-CPP 中间体或与小麦中发现的 CPP 的正常立体异构体反应(如描述小麦 CPP 合酶的随附论文所证明)。与大麦 (Hordeum vulgare) KS 的比较表明单子叶植物 KS 的保护,至少在小谷物谷物中
  • Probing Labdane-Related Diterpenoid Biosynthesis in the Fungal Genus <i>Aspergillus</i>
    作者:Meimei Xu、Matthew L. Hillwig、Mollie S. Tiernan、Reuben J. Peters
    DOI:10.1021/acs.jnatprod.6b00764
    日期:2017.2.24
    biosynthesis. Notably, fungi contain a number of cyclases characteristic of labdane-related diterpenoid metabolism, which have not been much explored. These also are often found near cytochrome P450 (CYP) mono-oxygenases that presumably further decorate the ensuing diterpene, suggesting that these fungi might produce more elaborate diterpenoids. To probe the functional diversity of such biosynthetic capacity
    尽管萜类化合物的产生通常与植物有关,但各种真菌都含有操纵子,这些操纵子预计会导致这种生物合成。值得注意的是,真菌含有许多与拉丹烷有关的二萜类代谢特征的环化酶,目前尚未对此进行过多研究。这些也经常在细胞色素P450(CYP)单加氧酶附近发现,推测可能进一步修饰了随后的二萜,表明这些真菌可能会产生更复杂的二萜。为了探测这种生物合成能力的功能多样性,对真菌曲霉属的系统发育多样性环化酶和相关CYP进行了研究。进行了这项研究,揭示了它们产生异戊二烯衍生的二萜的能力。有趣的是,在植物相关真菌中大量发现了与拉丹烷相关的二萜类生物合成基因,这暗示这些天然产物可能在这种相互作用中起作用。因此,在此假设异匹马烷的生产可以帮助曲霉属真菌的植物腐生生活方式。
  • Expanding the Landscape of Diterpene Structural Diversity through Stereochemically Controlled Combinatorial Biosynthesis
    作者:Johan Andersen-Ranberg、Kenneth Thermann Kongstad、Morten Thrane Nielsen、Niels Bjerg Jensen、Irini Pateraki、Søren Spanner Bach、Britta Hamberger、Philipp Zerbe、Dan Staerk、Jörg Bohlmann、Birger Lindberg Møller、Björn Hamberger
    DOI:10.1002/anie.201510650
    日期:2016.2.5
    Plant-derived diterpenoids serve as important pharmaceuticals, food additives, and fragrances, yet their low natural abundance and high structural complexity limits their broader industrial utilization. By mimicking the modularity of diterpene biosynthesis in plants, we constructed 51 functional combinations of class I and II diterpene synthases, 41 of which are "new-to-nature". Stereoselective biosynthesis
    植物源二萜类化合物可作为重要的药物、食品添加剂和香料,但其天然丰度低和结构复杂性高限制了其更广泛的工业应用。通过模仿植物中二萜生物合成的模块性,我们构建了 51 个 I 类和 II 类二萜合酶的功能组合,其中 41 个是“新的”。证明了 50 多种二萜骨架的立体选择性生物合成,包括天然变体和新型对映体或非对映体对应物。在酿酒酵母工程菌株中实现了四个工业相关目标的可扩展生物技术生产。
  • Biosynthesis of bioactive diterpenoids in the medicinal plant <i>Vitex agnus‐castus</i>
    作者:Allison M. Heskes、Tamil C.M. Sundram、Berin A. Boughton、Niels B. Jensen、Nikolaj L. Hansen、Christoph Crocoll、Federico Cozzi、Simon Rasmussen、Britta Hamberger、Björn Hamberger、Dan Staerk、Birger L. Møller、Irini Pateraki
    DOI:10.1111/tpj.13822
    日期:2018.3
    SummaryVitex agnus‐castus L. (Lamiaceae) is a medicinal plant historically used throughout the Mediterranean region to treat menstrual cycle disorders, and is still used today as a clinically effective treatment for premenstrual syndrome. The pharmaceutical activity of the plant extract is linked to its ability to lower prolactin levels. This feature has been attributed to the presence of dopaminergic diterpenoids that can bind to dopamine receptors in the pituitary gland. Phytochemical analyses of V. agnus‐castus show that it contains an enormous array of structurally related diterpenoids and, as such, holds potential as a rich source of new dopaminergic drugs. The present work investigated the localisation and biosynthesis of diterpenoids in V. agnus‐castus. With the assistance of matrix‐assisted laser desorption ionisation‐mass spectrometry imaging (MALDI‐MSI), diterpenoids were localised to trichomes on the surface of fruit and leaves. Analysis of a trichome‐specific transcriptome database, coupled with expression studies, identified seven candidate genes involved in diterpenoid biosynthesis: three class II diterpene synthases (diTPSs); three class I diTPSs; and a cytochrome P450 (CYP). Combinatorial assays of the diTPSs resulted in the formation of a range of different diterpenes that can account for several of the backbones of bioactive diterpenoids observed in V. agnus‐castus. The identified CYP, VacCYP76BK1, was found to catalyse 16‐hydroxylation of the diol‐diterpene, peregrinol, to labd‐13Z‐ene‐9,15,16‐triol when expressed in Saccharomyces cerevisiae. Notably, this product is a potential intermediate in the biosynthetic pathway towards bioactive furan‐ and lactone‐containing diterpenoids that are present in this species.
  • Partial synthesis of 9,10-syn-diterpenes via tosylhydrazone reduction: (-)-(9.beta.)-pimara-7,15-diene and (-)-(9.beta.)-isopimaradiene
    作者:Min Chu、Robert M. Coates
    DOI:10.1021/jo00043a013
    日期:1992.8
    (9-beta)-Pimara-7,15-diene (3), a proposed intermediate in the biosynthesis of the momilactone phytoalexins (1 and 2) from rice, and its C-13 epimer, (9-beta)-isopimara-7,15-diene (4), were synthesized from methyl pimara- and isopimara-8,15-dien-18-oates (8b and 8a, respectively). Allylic oxidation of 8a and 8b as well as the derived diterpene hydrocarbons 15a and 15b with chromium trioxide-dipyridine complex afforded 8,15-dien-7-ones 9a, 9b, 16a, and 16b (35-54%). Lithium-ammonia reduction of 9a, 16a, and 16b gave predominantly trans,anti,trans-isopimara- and -pimara-15-en-7-ones 10, 17a, and 17b. In contrast, catecholborane reduction of the tosylhydrazones of 9a and 9b provided methyl (9-beta)-isopimara- and (9-beta)-pimara-7,15-dien-20-oates (23a and 23b) having the 9,10-syn stereochemistry. The parent diterpenes, 3 and 4, were obtained by carboxyl-to-methyl conversions. In a collaborative investigation 3 was tentatively identified as one of five diterpene hydrocarbons produced upon incubation of (E,E,E)-geranylgeranyl pyrophosphate with a crude enzyme extract from UV-treated rice plants.
    (9-β)-坝沙烯-7,15-二烯(3)及其C-13表式异构体(4)是从水稻中产生的植保素类木菠萝烯(1和2)生物合成中的一个中间体。3和4从甲基巴沙和异巴沙-8,15-二烯-18酸(8b和8a)中合成。铬酸-二吡啶配合物对8a和8b以及它们的二烯烃15a和15b进行邻位氧化得到8,15-二烯-7-酮类化合物-9a、9b、16a和16b(35-54%产率)。用液氨-锂对9a、16a和16b进行还原,主要产率获得trans,anti,trans-异巴沙和巴沙-15-烯-7-酮(10,17a和17b)。相比之下,使用邻苯二酚硼烷还原9a和9b的犀角腙,得到具有9,10-顺式立体结构的甲基(9-β)-异巴沙-7,15-二烯-20酸和甲基(9-β)-巴沙-7,15-二烯-20酸(23a和23b)。通过羧酸基团转化为甲基基团得到这两种二烯烃的亲本化合物。合作研究发现,3是用紫外处理过的水稻粗酶提取液培养(E,E,E)-瑞香龙脑二磷酸酯后产生的五种二烯烃中的一种。
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸 黄黄质 黄钟花醌 黄质醛 黄褐毛忍冬皂苷A 黄蝉花素 黄蝉花定