摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

7,9,9'-Tri-cis-neurosporene | 10467-46-6

中文名称
——
中文别名
——
英文名称
7,9,9'-Tri-cis-neurosporene
英文别名
(6E,8Z,10Z,12E,14E,16E,18E,20E,22Z,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,8,10,12,14,16,18,20,22,26,30-dodecaene
7,9,9'-Tri-cis-neurosporene化学式
CAS
10467-46-6
化学式
C40H58
mdl
——
分子量
538.9
InChiKey
ATCICVFRSJQYDV-IFJQPPEWSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    15.5
  • 重原子数:
    40
  • 可旋转键数:
    17
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.4
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    7,9,9'-Tri-cis-neurosporene 、 a quinone 生成 prolycopene 、 a quinol
    参考文献:
    名称:
    ?-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene
    摘要:
    The plant carotenoid biosynthetic pathway to cyclic carotenes proceeds via carotene precursors in cis configuration. Involvement of individual isomers was elucidated by genetic complementation of desaturations and in vitro reactions of the corresponding enzyme. Determination of substrate and product specificity of phytoene and zeta-carotene desaturase revealed that 15-cis-phytoene is converted to 9,15,9'-tricis-zeta-carotene with 15,9'-dicis-phytofluene as intermediate by the first desaturase. Prior to a subsequent conversion by zeta-carotene desaturase, the 15-cis double bond of 9,15,9'-tricis-zeta-carotene has to be ( photo) isomerized to all-trans. Then, the resulting 9,9'-dicis-zeta-carotene is utilized by zeta-carotene desaturase via 7,9,9'-tricis-neurosporene to 7,9,7', 9'-tetracislycopene. Other zeta-carotene isomers that are assumed to be spontaneous isomerization products were not converted, except for the asymmetric 9-cis-zeta-carotene. This isomer is desaturated only to 7,9-dicis-neurosporene resembling a dead-end of the pathway. Prolycopene, the product of the desaturation reactions, is finally isomerized by a specific isomerase to all-trans-lycopene, which is a prerequisite for cyclization to beta-carotene. The 5-cis-lycopene and the 9-cis-and 13-cis-beta-carotene isomers detected in leaves are thought to originate independently from cis precursors by non-enzymatic isomerization of their all-trans forms.
    DOI:
    10.1007/s00425-004-1395-2
  • 作为产物:
    描述:
    (Z)-7-十四碳烯-2-酮 、 a quinone 生成 7,9,9'-Tri-cis-neurosporene 、 a quinol
    参考文献:
    名称:
    ?-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene
    摘要:
    The plant carotenoid biosynthetic pathway to cyclic carotenes proceeds via carotene precursors in cis configuration. Involvement of individual isomers was elucidated by genetic complementation of desaturations and in vitro reactions of the corresponding enzyme. Determination of substrate and product specificity of phytoene and zeta-carotene desaturase revealed that 15-cis-phytoene is converted to 9,15,9'-tricis-zeta-carotene with 15,9'-dicis-phytofluene as intermediate by the first desaturase. Prior to a subsequent conversion by zeta-carotene desaturase, the 15-cis double bond of 9,15,9'-tricis-zeta-carotene has to be ( photo) isomerized to all-trans. Then, the resulting 9,9'-dicis-zeta-carotene is utilized by zeta-carotene desaturase via 7,9,9'-tricis-neurosporene to 7,9,7', 9'-tetracislycopene. Other zeta-carotene isomers that are assumed to be spontaneous isomerization products were not converted, except for the asymmetric 9-cis-zeta-carotene. This isomer is desaturated only to 7,9-dicis-neurosporene resembling a dead-end of the pathway. Prolycopene, the product of the desaturation reactions, is finally isomerized by a specific isomerase to all-trans-lycopene, which is a prerequisite for cyclization to beta-carotene. The 5-cis-lycopene and the 9-cis-and 13-cis-beta-carotene isomers detected in leaves are thought to originate independently from cis precursors by non-enzymatic isomerization of their all-trans forms.
    DOI:
    10.1007/s00425-004-1395-2
点击查看最新优质反应信息

文献信息

  • Biochemical Characterization of Purified zeta-Carotene Desaturase from Anabaena PCC 7120 after Expression in Escherichia coli
    作者:Manuela Albrecht、Hartmut Linden、Gerhard Sandmann
    DOI:10.1111/j.1432-1033.1996.00115.x
    日期:1996.2.15
    A novel enzyme, ζ‐carotene desaturase from the cyanobacterium Anabaena, which catalyzes the last two steps in a series of desaturations, was overexpressed in Escherichia coli. For the first time, this allowed the purification of this enzyme and subsequent enzyme kinetic studies. The enzyme was solubilized from the E. coli membranes by Chaps and purified to homogeneity by ammonium sulfate precipitation, ion‐exchange and hydrophobic interaction chromatography. The correct translational start was confirmed by N‐terminal protein sequencing. Substrates for ζ‐carotene desaturase apart from ζ‐carotene are those carotenes which partially resemble the latter, like neurosporene and β‐zeacarotene yielding lycopene and γ‐carotene, respectively as reaction products. Also cis isomers like pro‐ζ‐carotene were converted to the correspondiong products. Km values of 10 μM were determined for both substrates ζ‐carotene and neurosporene. The enzyme was inhibited to some extent by the experimental herbicides J852 and LS80707 and also by diphenylamine which is a well‐known inhibitor of the bacterial‐type phytoene desaturase.
  • ?-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene
    作者:J�rgen Breitenbach、Gerhard Sandmann
    DOI:10.1007/s00425-004-1395-2
    日期:2005.3
    The plant carotenoid biosynthetic pathway to cyclic carotenes proceeds via carotene precursors in cis configuration. Involvement of individual isomers was elucidated by genetic complementation of desaturations and in vitro reactions of the corresponding enzyme. Determination of substrate and product specificity of phytoene and zeta-carotene desaturase revealed that 15-cis-phytoene is converted to 9,15,9'-tricis-zeta-carotene with 15,9'-dicis-phytofluene as intermediate by the first desaturase. Prior to a subsequent conversion by zeta-carotene desaturase, the 15-cis double bond of 9,15,9'-tricis-zeta-carotene has to be ( photo) isomerized to all-trans. Then, the resulting 9,9'-dicis-zeta-carotene is utilized by zeta-carotene desaturase via 7,9,9'-tricis-neurosporene to 7,9,7', 9'-tetracislycopene. Other zeta-carotene isomers that are assumed to be spontaneous isomerization products were not converted, except for the asymmetric 9-cis-zeta-carotene. This isomer is desaturated only to 7,9-dicis-neurosporene resembling a dead-end of the pathway. Prolycopene, the product of the desaturation reactions, is finally isomerized by a specific isomerase to all-trans-lycopene, which is a prerequisite for cyclization to beta-carotene. The 5-cis-lycopene and the 9-cis-and 13-cis-beta-carotene isomers detected in leaves are thought to originate independently from cis precursors by non-enzymatic isomerization of their all-trans forms.
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸 黄黄质 黄钟花醌 黄质醛 黄褐毛忍冬皂苷A 黄蝉花素 黄蝉花定