3,5-Dimethylisoxazoles Act As Acetyl-lysine-mimetic Bromodomain Ligands
摘要:
Histone-lysine acetylation is a vital chromatin post-translational modification involved in the epigenetic regulation of gene transcription. Bromodomains bind acetylated lysines, acting as readers of the histone-acetylation code. Competitive inhibitors of this interaction have antiproliferative and anti-inflammatory properties. With 57 distinct bromodomains known, the discovery of subtype-selective inhibitors of the histone bromodomain interaction is of great importance. We have identified the 3,5-dimethylisoxazole moiety as a novel acetyl-lysine bioisostere, which displaces acetylated histone-mimicking peptides from bromodomains. Using X-ray crystallographic analysis, we have determined the interactions responsible for the activity and selectivity of 4-substituted 3,5-dimethylisoxazoles against a selection of phylogenetically diverse bromodomains. By exploiting these interactions, we have developed compound 4d, which has IC50 values of < 5 mu M for the bromodomain-containing proteins BRD2(1) and BRD4(1). These compounds are promising leads for the further development of selective probes for the bromodomain and extra C-terminal domain (BET) family and CREBBP bromodomains.
3,5-Dimethylisoxazoles Act As Acetyl-lysine-mimetic Bromodomain Ligands
摘要:
Histone-lysine acetylation is a vital chromatin post-translational modification involved in the epigenetic regulation of gene transcription. Bromodomains bind acetylated lysines, acting as readers of the histone-acetylation code. Competitive inhibitors of this interaction have antiproliferative and anti-inflammatory properties. With 57 distinct bromodomains known, the discovery of subtype-selective inhibitors of the histone bromodomain interaction is of great importance. We have identified the 3,5-dimethylisoxazole moiety as a novel acetyl-lysine bioisostere, which displaces acetylated histone-mimicking peptides from bromodomains. Using X-ray crystallographic analysis, we have determined the interactions responsible for the activity and selectivity of 4-substituted 3,5-dimethylisoxazoles against a selection of phylogenetically diverse bromodomains. By exploiting these interactions, we have developed compound 4d, which has IC50 values of < 5 mu M for the bromodomain-containing proteins BRD2(1) and BRD4(1). These compounds are promising leads for the further development of selective probes for the bromodomain and extra C-terminal domain (BET) family and CREBBP bromodomains.
BROMODOMAIN LIGANDS CAPABLE OF DIMERIZING IN AN AQUEOUS SOLUTION, AND METHODS OF USING SAME
申请人:Coferon, Inc.
公开号:US20140243286A1
公开(公告)日:2014-08-28
Described herein are monomers capable of forming a biologically useful multimer when in contact with one, two, three or more other monomers in an aqueous media. In one aspect, such monomers may be capable of binding to another monomer in an aqueous media (e.g. in vivo) to form a multimer (e.g. a dimer). Contemplated monomers may include a ligand moiety, a linker element, and a connector element that joins the ligand moiety and the linker element. In an aqueous media, such contemplated monomers may join together via each linker element and may thus be capable of modulating one or more biomolecules substantially simultaneously, e.g., modulate two or more binding domains on a protein or on different proteins.
BIOORTHOGONAL MONOMERS CAPABLE OF DIMERIZING AND TARGETING BROMODOMAINS, AND METHODS OF USING SAME
申请人:Coferon, Inc.
公开号:US20140243321A1
公开(公告)日:2014-08-28
Described herein are monomers capable of forming a biologically useful multimer when in contact with one, two, three or more other monomers in an aqueous media. In one aspect, such monomers may be capable of binding to another monomer in an aqueous media (e.g. in vivo) to form a multimer, (e.g. a dimer). Contemplated monomers may include a ligand moiety, a linker element, and a connector element that joins the ligand moiety and the linker element. In an aqueous media, such contemplated monomers may join together via each linker element and may thus be capable of modulating one or more biomolecules substantially simultaneously, e.g., modulate two or more binding domains on a protein or on different proteins.
BIVALENT BROMODOMAIN LIGANDS, AND METHODS OF USING SAME
申请人:Coferon, Inc.
公开号:US20140243322A1
公开(公告)日:2014-08-28
Described herein are compounds capable of modulating one or more biomolecules substantially simultaneously, e.g., modulating two or more binding domains (e.g., bromodomains) on a protein or on different proteins.
[EN] BIVALENT BROMODOMAIN LIGANDS, AND METHODS OF USING SAME<br/>[FR] LIGANDS BROMODOMAINES BIVALENTS ET PROCÉDÉS D'UTILISATION DE CEUX-CI
申请人:COFERON INC
公开号:WO2013033268A2
公开(公告)日:2013-03-07
Described herein are compounds capable of modulating one or more biomolecules substantially simultaneously, e.g., modulating two or more binding domains (e.g., bromodomains) on a protein or on different proteins.
[EN] BIOORTHOGONAL MONOMERS CAPABLE OF DIMERIZING AND TARGETING BROMODOMAINS AND METHODS OF USING SAME<br/>[FR] MONOMÈRES BIOORTHOGONAUX CAPABLES DE SE DIMÉRISER ET DE CIBLER DES BROMODOMAINES ET PROCÉDÉS D'UTILISATION CORRESPONDANT
申请人:COFERON INC
公开号:WO2013033269A1
公开(公告)日:2013-03-07
Described herein are monomers capable of forming a biologically useful multimer when in contact with one, two, three or more other monomers in an aqueous media. In one aspect, such monomers may be capable of binding to another monomer in an aqueous media (e.g. in vivo) to form a multimer, (e.g. a dimer). Contemplated monomers may include a ligand moiety, a linker element, and a connector element that joins the ligand moiety and the linker element. In an aqueous media, such contemplated monomers may join together via each linker element and may thus be capable of modulating one or more biomolecules substantially simultaneously, e.g., modulate two or more binding domains on a protein or on different proteins.