摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(E)-3-(2,5-diethoxyphenyl)prop-2-enoic acid

中文名称
——
中文别名
——
英文名称
(E)-3-(2,5-diethoxyphenyl)prop-2-enoic acid
英文别名
——
(E)-3-(2,5-diethoxyphenyl)prop-2-enoic acid化学式
CAS
——
化学式
C13H16O4
mdl
——
分子量
236.268
InChiKey
JVYJEAXNJIIKNC-VMPITWQZSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.5
  • 重原子数:
    17
  • 可旋转键数:
    6
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.31
  • 拓扑面积:
    55.8
  • 氢给体数:
    1
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (E)-3-(2,5-diethoxyphenyl)prop-2-enoic acidpotassium carbonate三乙胺三氯氧磷 作用下, 以 丙酮 为溶剂, 反应 0.33h, 生成 (E)-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-3-(2,5-dimethoxyphenyl)acrylamide
    参考文献:
    名称:
    Design and synthesis of novel tranilast analogs: Docking, antiproliferative evaluation and in-silico screening of TGFβR1 inhibitors
    摘要:
    The discovery of the antiproliferative potential of tranilast prompted additional studies directed at understanding the mechanisms of tranilast action. Its inhibitory effect on cell proliferation depends principally on the capacity of tranilast to interfere with transforming growth factor beta (TGFβR1) signaling. This work summarizes design, synthesis and biological evaluation of sixteen novel tranilast analogs on different tumors such as PC-3, HepG-2 and MCF-7 cell lines. The in vitro cytotoxicity was evaluated using MTT assay showed that, twelve compounds out of sixteen showed higher cytotoxic activities (IC50's 1.1-6.29 µM), than that of the reference standard, 5-FU (IC50 7.53 µM). The promising cytotoxic hits (4b, 7a, b and 14c-e), proved to be selective to cancer cells when their cytotoxicity's are examined on human normal cell line (WI-38). Then they are investigated for their possible mode of action as TGFβR1 inhibitors; remarkable inhibition of TGFβR1 by these hits was observed at the range of IC50 0.087-3.276 μM. The cell cycle analysis of the most potent TGFβR1 inhibitor, 4b revealed cell cycle arrest at G2/M phase on prostate cancer cells. Additionally, it is clearly indicated apoptosis induction at Pre-G1 phase, this is substantiated by significant increase in the expression on the tumor suppressor gene, p53 and up regulation the level of apoptosis mediator, caspase-3. In addition, in silico study was performed for validating the physicochemical and ADME properties which revealed that, all compounds are orally bioavailable with no side effects complying with Lipinski rule. The proposed mode of action can be further explored on the light of molecular modeling simulation of the most potent compounds, 4b and 14e which were docked into the active sites of TGFβR1 to predict their affinities toward the receptor.
    DOI:
    10.1016/j.bioorg.2020.104368
  • 作为产物:
    描述:
    丙二酸2,5-二乙氧基苯甲醛哌啶 作用下, 以 乙醇 为溶剂, 反应 5.0h, 生成 (E)-3-(2,5-diethoxyphenyl)prop-2-enoic acid
    参考文献:
    名称:
    Design and synthesis of novel tranilast analogs: Docking, antiproliferative evaluation and in-silico screening of TGFβR1 inhibitors
    摘要:
    The discovery of the antiproliferative potential of tranilast prompted additional studies directed at understanding the mechanisms of tranilast action. Its inhibitory effect on cell proliferation depends principally on the capacity of tranilast to interfere with transforming growth factor beta (TGFβR1) signaling. This work summarizes design, synthesis and biological evaluation of sixteen novel tranilast analogs on different tumors such as PC-3, HepG-2 and MCF-7 cell lines. The in vitro cytotoxicity was evaluated using MTT assay showed that, twelve compounds out of sixteen showed higher cytotoxic activities (IC50's 1.1-6.29 µM), than that of the reference standard, 5-FU (IC50 7.53 µM). The promising cytotoxic hits (4b, 7a, b and 14c-e), proved to be selective to cancer cells when their cytotoxicity's are examined on human normal cell line (WI-38). Then they are investigated for their possible mode of action as TGFβR1 inhibitors; remarkable inhibition of TGFβR1 by these hits was observed at the range of IC50 0.087-3.276 μM. The cell cycle analysis of the most potent TGFβR1 inhibitor, 4b revealed cell cycle arrest at G2/M phase on prostate cancer cells. Additionally, it is clearly indicated apoptosis induction at Pre-G1 phase, this is substantiated by significant increase in the expression on the tumor suppressor gene, p53 and up regulation the level of apoptosis mediator, caspase-3. In addition, in silico study was performed for validating the physicochemical and ADME properties which revealed that, all compounds are orally bioavailable with no side effects complying with Lipinski rule. The proposed mode of action can be further explored on the light of molecular modeling simulation of the most potent compounds, 4b and 14e which were docked into the active sites of TGFβR1 to predict their affinities toward the receptor.
    DOI:
    10.1016/j.bioorg.2020.104368
点击查看最新优质反应信息

文献信息

  • Design and synthesis of novel tranilast analogs: Docking, antiproliferative evaluation and in-silico screening of TGFβR1 inhibitors
    作者:Magda M.F. Ismail、Heba S.A. El-Zahabi、Rabab S. Ibrahim、Ahmed B.M. Mehany
    DOI:10.1016/j.bioorg.2020.104368
    日期:2020.12
    The discovery of the antiproliferative potential of tranilast prompted additional studies directed at understanding the mechanisms of tranilast action. Its inhibitory effect on cell proliferation depends principally on the capacity of tranilast to interfere with transforming growth factor beta (TGFβR1) signaling. This work summarizes design, synthesis and biological evaluation of sixteen novel tranilast analogs on different tumors such as PC-3, HepG-2 and MCF-7 cell lines. The in vitro cytotoxicity was evaluated using MTT assay showed that, twelve compounds out of sixteen showed higher cytotoxic activities (IC50's 1.1-6.29 µM), than that of the reference standard, 5-FU (IC50 7.53 µM). The promising cytotoxic hits (4b, 7a, b and 14c-e), proved to be selective to cancer cells when their cytotoxicity's are examined on human normal cell line (WI-38). Then they are investigated for their possible mode of action as TGFβR1 inhibitors; remarkable inhibition of TGFβR1 by these hits was observed at the range of IC50 0.087-3.276 μM. The cell cycle analysis of the most potent TGFβR1 inhibitor, 4b revealed cell cycle arrest at G2/M phase on prostate cancer cells. Additionally, it is clearly indicated apoptosis induction at Pre-G1 phase, this is substantiated by significant increase in the expression on the tumor suppressor gene, p53 and up regulation the level of apoptosis mediator, caspase-3. In addition, in silico study was performed for validating the physicochemical and ADME properties which revealed that, all compounds are orally bioavailable with no side effects complying with Lipinski rule. The proposed mode of action can be further explored on the light of molecular modeling simulation of the most potent compounds, 4b and 14e which were docked into the active sites of TGFβR1 to predict their affinities toward the receptor.
查看更多