A New Class of Highly Potent Matrix Metalloproteinase Inhibitors Based on Triazole-Substituted Hydroxamates: (Radio)Synthesis and in Vitro and First in Vivo Evaluation
摘要:
In vivo imaging of MMPs is of great (pre)clinical interest and can potentially be realized with modern three-dimensional and noninvasive in vivo molecular imaging techniques such as positron emission tomography (PET). Consequently, MMP inhibitors (MMPIs) radiolabeled with positron emitting nuclides (e.g., F-18) represent a suitable tool for the visualization of activated MMPs with PET. On the basis of our previous work and results regarding radiolabeled and unlabeled derivatives of the nonselective MMPIs, we discovered a new class of fluorinated MMPIs with a triazole-substituted hydroxamate substructure. These novel MMPIs are characterized by an increased hydrophilicity compared with the lead structures and excellent MMP inhibition potencies for MMP-2, MMP-8, MMP-9, and MMP-13 (IC50 = 0.006-107 nM). Therefore, one promising fluorinated triazole-substituted hydroxamate (30b) was selected and resynthesised as its F-18-labeled version to yield the potential PET radioligand [F-18]30b. The biodistribution behavior of this novel compound was investigated with small animal PET.
A New Class of Highly Potent Matrix Metalloproteinase Inhibitors Based on Triazole-Substituted Hydroxamates: (Radio)Synthesis and in Vitro and First in Vivo Evaluation
摘要:
In vivo imaging of MMPs is of great (pre)clinical interest and can potentially be realized with modern three-dimensional and noninvasive in vivo molecular imaging techniques such as positron emission tomography (PET). Consequently, MMP inhibitors (MMPIs) radiolabeled with positron emitting nuclides (e.g., F-18) represent a suitable tool for the visualization of activated MMPs with PET. On the basis of our previous work and results regarding radiolabeled and unlabeled derivatives of the nonselective MMPIs, we discovered a new class of fluorinated MMPIs with a triazole-substituted hydroxamate substructure. These novel MMPIs are characterized by an increased hydrophilicity compared with the lead structures and excellent MMP inhibition potencies for MMP-2, MMP-8, MMP-9, and MMP-13 (IC50 = 0.006-107 nM). Therefore, one promising fluorinated triazole-substituted hydroxamate (30b) was selected and resynthesised as its F-18-labeled version to yield the potential PET radioligand [F-18]30b. The biodistribution behavior of this novel compound was investigated with small animal PET.
Inverse 1,2,3-Triazole-1-yl-ethyl Substituted Hydroxamates as Highly Potent Matrix Metalloproteinase Inhibitors: (Radio)synthesis, in Vitro and First in Vivo Evaluation
Noninvasive imaging and quantification of matrix metalloproteinase (MMP) activity in vivo are of great (pre)clinical interest. This can potentially be realized by using radiolabeled MMP inhibitors (MMPIs) as positron emission tomography (PET) imaging agents. Triazole-substituted MMPIs, discovered by our group, are highly potent inhibitors of MMP-2, -8, -9, and -13. The triazole ring and its position contribute significantly to the potency of the MMP inhibitor. To evaluate structure activity relationships (SARs) of the initially discovered triazole-substituted MMPIs, an additional CH2-group between the backbone of the molecule and the triazole core was inserted, and the triazole ring was "inversed" by switching the alkyne and azide groups. Similar to the original triazole-substituted hydroxamates, the inverse triazole MMPIs are excellent inhibitors with promising in vivo properties. Pharmacokinetic properties and metabolic stability of an F-18-labeled candidate in mice were investigated.