Remarkable Effect of Bimetallic Nanocluster Catalysts for Aerobic Oxidation of Alcohols: Combining Metals Changes the Activities and the Reaction Pathways to Aldehydes/Carboxylic Acids or Esters
Selective oxidation of alcohols catalyzed by novel carbon-stabilized polymer-incarcerated bimetallic nanocluster catalysts using molecular oxygen has been developed. The reactivity and the selectivity were strongly dependent on the combination of metals and solvent systems; aldehydes and ketones were obtained by the gold/platinum catalyst in benzotrifluoride, and esters were formed by the gold/palladium
Environmentally benign aerobic oxidation of alcohols to methyl esters catalyzed by polymer-incarcerated gold nanoclusters (PI-Au) was developed and reactions proceeded under very mild conditions. The catalyst could be recovered by simple operations without significant loss of activity.
imine/amideselectivity and size of NPs was discovered; Au‐NPs of medium size (4.5–11 nm) were found to be optimal. High yields were obtained with a broad range of substrates, including primary amines. Au‐NPs of medium size could be recovered and reused several times without loss of activity, and they showed good activity and selectivity in amide formation from alcohols and amines.
Selective imine formation from alcohols and amines catalyzed by polymer incarcerated gold/palladium alloy nanoparticles with molecular oxygen as an oxidant
Carbon black stabilized, polymer incarcerated gold/palladium alloy nanoparticles (PICB-Au/Pd) act as an efficient, reusable heterogeneous catalyst for imine synthesis from alcohols and amines through a tandem oxidative process using molecular oxygen as the terminal oxidant.
Direct Amidation from Alcohols and Amines through a Tandem Oxidation Process Catalyzed by Heterogeneous‐Polymer‐Incarcerated Gold Nanoparticles under Aerobic Conditions
highly elegant and suitable synthesis of amide products from alcohols and amines through a tandem oxidation process that uses molecular oxygen as a terminal oxidant. Carbon‐black‐stabilized polymer‐incarcerated gold (PICB‐Au) or gold/cobalt (PICB‐Au/Co) nanoparticles were employed as an efficient heterogeneous catalyst depending on alcohol reactivity and generated only water as the major co‐product