摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-(piperidin-4-yloxy)-2-(trifluoromethyl)pyridine | 1353754-94-5

中文名称
——
中文别名
——
英文名称
5-(piperidin-4-yloxy)-2-(trifluoromethyl)pyridine
英文别名
5-piperidin-4-yloxy-2-(trifluoromethyl)pyridine
5-(piperidin-4-yloxy)-2-(trifluoromethyl)pyridine化学式
CAS
1353754-94-5
化学式
C11H13F3N2O
mdl
——
分子量
246.232
InChiKey
PAIIFKWCIPIVHX-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    305.6±42.0 °C(Predicted)
  • 密度:
    1.239±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.9
  • 重原子数:
    17
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.55
  • 拓扑面积:
    34.2
  • 氢给体数:
    1
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    5-(piperidin-4-yloxy)-2-(trifluoromethyl)pyridine氢溴酸 、 palladium diacetate 、 R-(+)-1,1'-联萘-2,2'-双二苯膦sodium t-butanolate 作用下, 以 甲苯 为溶剂, 反应 19.0h, 生成
    参考文献:
    名称:
    Synthesis and Structure–Activity Relationships for Extended Side Chain Analogues of the Antitubercular Drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824)
    摘要:
    Novel extended side chain nitroimidazooxazine analogues featuring diverse linker groups between two aryl rings were studied as a potential strategy to improve solubility and oral activity against chronic infection by Mycobacterium tuberculosis. Both lipophilic and highly polar functionalities (e.g., carboxamide, alkylamine, piperazine, piperidine, but not sulfonamide) were well tolerated in vitro, and the hydrophilic linkers provided some solubility improvements, particularly in combination with pyridine rings. Most of the 18 compounds further assessed showed high microsomal stabilities, although in the acute infection mouse model, just one stilbene (6-fold) and two pyridine-containing acetylene derivatives (5-fold and >933-fold) gave in vivo efficacies notably superior to the clinical stage compound pretomanid (PA-824). The most efficacious analogue also displayed outstanding in vivo activity in the stringent chronic model (up to 24-fold better than the drug delamanid and 4-fold greater than our previous best phenylpyridine candidate), with favorable pharmacokinetics, including good oral bioavailability in the rat.
    DOI:
    10.1021/jm501608q
  • 作为产物:
    参考文献:
    名称:
    Structure–Activity Relationships for Amide-, Carbamate-, And Urea-Linked Analogues of the Tuberculosis Drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824)
    摘要:
    Analogues of clinical tuberculosis drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824), in which the OCH2 linkage was replaced with amide, carbamate, and urea functionality, were investigated as an alternative approach to address oxidative metabolism, reduce lipophilicity, and improve aqueous solubility. Several soluble monoaryl examples displayed moderately improved (similar to 2- to 4-fold) potencies against replicating Mycobacterium tuberculosis but were generally inferior inhibitors under anaerobic (nonreplicating) conditions. More lipophilic biaryl derivatives mostly displayed similar or reduced potencies to these in contrast to the parent biaryl series. The leading biaryl carbamate demonstrated exceptional metabolic stability and a 5-fold better efficacy than the parent drug in a mouse model of acute M. tuberculosis infection but was poorly soluble. Bioisosteric replacement of this biaryl moiety by arylpiperazine resulted in a soluble, orally bioavailable carbamate analogue providing identical activity in the acute model, comparable efficacy to OPC-67683 in a chronic infection model, favorable pharmacokinetic profiles across several species, and enhanced safety.
    DOI:
    10.1021/jm2012276
点击查看最新优质反应信息

文献信息

  • [EN] OGA INHIBITOR COMPOUNDS<br/>[FR] COMPOSÉS INHIBITEURS D'OGA
    申请人:JANSSEN PHARMACEUTICA NV
    公开号:WO2019243530A1
    公开(公告)日:2019-12-26
    The present invention relates to O-GIcNAc hydrolase (OGA) inhibitors having the structure shown in formula (I). The invention is also directed to pharmaceutical compositions comprising such compounds to processes for preparing such compounds and compositions, and to the use of such compounds and compositions for the prevention and treatment of disorders in which inhibition of OGA is beneficial, such as tauopathies, in particular Alzheimer's disease or progressive supranuclear palsy; and neurodegenerative diseases accompanied by a tau pathology, in particular amyotrophic lateral sclerosis or frontotemporal lobe dementia caused by C90RF72 mutations. wherein RB is an aromatic heterobicyclic radical selected from the group consisting of (b-1) to (b-6).
    本发明涉及具有式(I)所示结构的O-GIcNAc水解酶(OGA)抑制剂。该发明还涉及包含这种化合物的药物组合物、制备这种化合物和组合物的方法,以及利用这种化合物和组合物预防和治疗抑制OGA有益的疾病,如tau病变,特别是阿尔茨海默病或进行性上核性麻痹;以及伴有tau病理的神经退行性疾病,特别是由C90RF72突变引起的肌萎缩侧索硬化或额颞叶痴呆症。其中RB是从(b-1)到(b-6)组成的芳香杂双环基团。
  • OGA INHIBITOR COMPOUNDS
    申请人:Janssen Pharmaceutica NV
    公开号:US20210122763A1
    公开(公告)日:2021-04-29
    The present invention relates to O-GlcNAc hydrolase (OGA) inhibitors. The invention is also directed to pharmaceutical compositions comprising such compounds, to processes for preparing such compounds and compositions, and to the use of such compounds and compositions for the prevention and treatment of disorders in which inhibition of OGA is beneficial, such as tauopathies, in particular Alzheimer's disease or progressive supranuclear palsy; and neurodegenerative diseases accompanied by a tau pathology, in particular amyotrophic lateral sclerosis or frontotemporal lobe dementia caused by C9ORF72 mutations.
  • Structure–Activity Relationships for Amide-, Carbamate-, And Urea-Linked Analogues of the Tuberculosis Drug (6<i>S</i>)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5<i>H</i>-imidazo[2,1-<i>b</i>][1,3]oxazine (PA-824)
    作者:Adrian Blaser、Brian D. Palmer、Hamish S. Sutherland、Iveta Kmentova、Scott G. Franzblau、Baojie Wan、Yuehong Wang、Zhenkun Ma、Andrew M. Thompson、William A. Denny
    DOI:10.1021/jm2012276
    日期:2012.1.12
    Analogues of clinical tuberculosis drug (6S)-2-nitro-6-[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824), in which the OCH2 linkage was replaced with amide, carbamate, and urea functionality, were investigated as an alternative approach to address oxidative metabolism, reduce lipophilicity, and improve aqueous solubility. Several soluble monoaryl examples displayed moderately improved (similar to 2- to 4-fold) potencies against replicating Mycobacterium tuberculosis but were generally inferior inhibitors under anaerobic (nonreplicating) conditions. More lipophilic biaryl derivatives mostly displayed similar or reduced potencies to these in contrast to the parent biaryl series. The leading biaryl carbamate demonstrated exceptional metabolic stability and a 5-fold better efficacy than the parent drug in a mouse model of acute M. tuberculosis infection but was poorly soluble. Bioisosteric replacement of this biaryl moiety by arylpiperazine resulted in a soluble, orally bioavailable carbamate analogue providing identical activity in the acute model, comparable efficacy to OPC-67683 in a chronic infection model, favorable pharmacokinetic profiles across several species, and enhanced safety.
  • Synthesis and Structure–Activity Relationships for Extended Side Chain Analogues of the Antitubercular Drug (6<i>S</i>)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5<i>H</i>-imidazo[2,1-<i>b</i>][1,3]oxazine (PA-824)
    作者:Brian D. Palmer、Hamish S. Sutherland、Adrian Blaser、Iveta Kmentova、Scott G. Franzblau、Baojie Wan、Yuehong Wang、Zhenkun Ma、William A. Denny、Andrew M. Thompson
    DOI:10.1021/jm501608q
    日期:2015.4.9
    Novel extended side chain nitroimidazooxazine analogues featuring diverse linker groups between two aryl rings were studied as a potential strategy to improve solubility and oral activity against chronic infection by Mycobacterium tuberculosis. Both lipophilic and highly polar functionalities (e.g., carboxamide, alkylamine, piperazine, piperidine, but not sulfonamide) were well tolerated in vitro, and the hydrophilic linkers provided some solubility improvements, particularly in combination with pyridine rings. Most of the 18 compounds further assessed showed high microsomal stabilities, although in the acute infection mouse model, just one stilbene (6-fold) and two pyridine-containing acetylene derivatives (5-fold and >933-fold) gave in vivo efficacies notably superior to the clinical stage compound pretomanid (PA-824). The most efficacious analogue also displayed outstanding in vivo activity in the stringent chronic model (up to 24-fold better than the drug delamanid and 4-fold greater than our previous best phenylpyridine candidate), with favorable pharmacokinetics, including good oral bioavailability in the rat.
查看更多