摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

tert-butyl (5-(hydroxy(phenyl)methyl)thiazol-2-yl)carbamate

中文名称
——
中文别名
——
英文名称
tert-butyl (5-(hydroxy(phenyl)methyl)thiazol-2-yl)carbamate
英文别名
tert-butyl N-[5-[hydroxy(phenyl)methyl]-1,3-thiazol-2-yl]carbamate
tert-butyl (5-(hydroxy(phenyl)methyl)thiazol-2-yl)carbamate化学式
CAS
——
化学式
C15H18N2O3S
mdl
——
分子量
306.386
InChiKey
APIAHQDYWLDBPC-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.7
  • 重原子数:
    21
  • 可旋转键数:
    5
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    99.7
  • 氢给体数:
    2
  • 氢受体数:
    5

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Design, synthesis, and biological evaluation of aminothiazole derivatives against the fungal pathogens Histoplasma capsulatum and Cryptococcus neoformans
    摘要:
    Invasive fungal disease constitutes a growing health burden and development of novel antifungal drugs with high potency and selectivity against new fungal molecular targets are urgently needed. Previously, an aminothiazole derivative, designated as 41F5, was identified in our laboratories as highly active against Histoplasma yeast (MIC50 0.4-0.8 mu M) through phenotypic high-throughput screening of a commercial library of 3600 purine mimicking compounds (Antimicrob. Agents Chemother. 2013, 57, 4349). Consequently, 68 analogues of 41F5 were designed and synthesized or obtained from commercial sources and their MIC(50)s of growth inhibition were evaluated in Histoplasma capsulatum to establish a basic structure-activity-relationship (SAR) for this potentially new class of antifungals. The growth inhibiting potentials of smaller subsets of this library were also evaluated in Cryptococcus neoformans and human hepatocyte HepG2 cells, the latter to obtain selectivity indices (SIs). The results indicate that a thiazole core structure with a naphth-1-ylmethyl group at the 5-position and cyclohexylamide-, cyclohexylmethylamide-, or cyclohexylethylamide substituents at the 2-position caused the highest growth inhibition of Histoplasma yeast with MIC(50)s of 0.4 mu M. For these analogues, SIs of 92 to > 100 indicated generally low host toxicity. Substitution at the 3- and 4-position decreased antifungal activity. Similarities and differences were observed between Histoplasma and Cryptococcus SARs. For Cryptococcus, the naphth-1-ylmethyl substituent at the 5-position and smaller cyclopentylamide- or cyclohexylamide groups at the 2-position were important for activity. In contrast, slightly larger cyclohexylmethyl- and cyclohexylethyl substituents markedly decreased activity. (C) 2014 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2014.12.006
  • 作为产物:
    描述:
    苯甲醛噻唑-2-氨基甲酸叔丁酯正丁基锂 作用下, 以 四氢呋喃 为溶剂, 反应 2.0h, 以59%的产率得到tert-butyl (5-(hydroxy(phenyl)methyl)thiazol-2-yl)carbamate
    参考文献:
    名称:
    Design, synthesis, and biological evaluation of aminothiazole derivatives against the fungal pathogens Histoplasma capsulatum and Cryptococcus neoformans
    摘要:
    Invasive fungal disease constitutes a growing health burden and development of novel antifungal drugs with high potency and selectivity against new fungal molecular targets are urgently needed. Previously, an aminothiazole derivative, designated as 41F5, was identified in our laboratories as highly active against Histoplasma yeast (MIC50 0.4-0.8 mu M) through phenotypic high-throughput screening of a commercial library of 3600 purine mimicking compounds (Antimicrob. Agents Chemother. 2013, 57, 4349). Consequently, 68 analogues of 41F5 were designed and synthesized or obtained from commercial sources and their MIC(50)s of growth inhibition were evaluated in Histoplasma capsulatum to establish a basic structure-activity-relationship (SAR) for this potentially new class of antifungals. The growth inhibiting potentials of smaller subsets of this library were also evaluated in Cryptococcus neoformans and human hepatocyte HepG2 cells, the latter to obtain selectivity indices (SIs). The results indicate that a thiazole core structure with a naphth-1-ylmethyl group at the 5-position and cyclohexylamide-, cyclohexylmethylamide-, or cyclohexylethylamide substituents at the 2-position caused the highest growth inhibition of Histoplasma yeast with MIC(50)s of 0.4 mu M. For these analogues, SIs of 92 to > 100 indicated generally low host toxicity. Substitution at the 3- and 4-position decreased antifungal activity. Similarities and differences were observed between Histoplasma and Cryptococcus SARs. For Cryptococcus, the naphth-1-ylmethyl substituent at the 5-position and smaller cyclopentylamide- or cyclohexylamide groups at the 2-position were important for activity. In contrast, slightly larger cyclohexylmethyl- and cyclohexylethyl substituents markedly decreased activity. (C) 2014 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2014.12.006
点击查看最新优质反应信息

文献信息

  • Design and synthesis of aminothiazole based Hepatitis B Virus (HBV) capsid inhibitors
    作者:Ting Pan、Yanchao Ding、Liyang Wu、Liting Liang、Xin He、Qianwen Li、Chuan Bai、Hui Zhang
    DOI:10.1016/j.ejmech.2019.01.059
    日期:2019.3
    The capsid assembly is an essential step for Hepatitis B Virus (HBV) life cycle and is an important target for anti-HBV drug development. In this report, we identified a hit compound with aminothiazole structure by the high throughput screening (HTS) which inhibited the interaction of HBV capsid protein within the cells. The structure hopping and SAR studies of the hit compound afforded compound 79
    衣壳装配是乙肝病毒(HBV)生命周期的重要步骤,并且是抗HBV药物开发的重要目标。在本报告中,我们通过抑制细胞内HBV衣壳蛋白相互作用的高通量筛选(HTS),鉴定了具有氨基噻唑结构的命中化合物。对该化合物的结构跳跃和SAR研究提供了具有强大的抗HBV复制活性和良好的基本药物样性质的化合物79。工作机理研究表明,化合物79可以通过杂芳基二氢嘧啶(HAP)支架与已知HBV衣壳抑制剂的相似结合位点结合,通过相似的疏水相互作用但具有不同的氢键。该化合物在细胞培养物中或在没有明显急性毒性的小鼠中均对HBV产生有效的抑制作用。我们建议对该化合物的进一步开发可能会导致靶向HBV衣壳装配的新型有效抗HBV抑制剂。
  • Design, synthesis, and biological evaluation of aminothiazole derivatives against the fungal pathogens Histoplasma capsulatum and Cryptococcus neoformans
    作者:Ahmed Khalil、Jessica A. Edwards、Chad A. Rappleye、Werner Tjarks
    DOI:10.1016/j.bmc.2014.12.006
    日期:2015.2
    Invasive fungal disease constitutes a growing health burden and development of novel antifungal drugs with high potency and selectivity against new fungal molecular targets are urgently needed. Previously, an aminothiazole derivative, designated as 41F5, was identified in our laboratories as highly active against Histoplasma yeast (MIC50 0.4-0.8 mu M) through phenotypic high-throughput screening of a commercial library of 3600 purine mimicking compounds (Antimicrob. Agents Chemother. 2013, 57, 4349). Consequently, 68 analogues of 41F5 were designed and synthesized or obtained from commercial sources and their MIC(50)s of growth inhibition were evaluated in Histoplasma capsulatum to establish a basic structure-activity-relationship (SAR) for this potentially new class of antifungals. The growth inhibiting potentials of smaller subsets of this library were also evaluated in Cryptococcus neoformans and human hepatocyte HepG2 cells, the latter to obtain selectivity indices (SIs). The results indicate that a thiazole core structure with a naphth-1-ylmethyl group at the 5-position and cyclohexylamide-, cyclohexylmethylamide-, or cyclohexylethylamide substituents at the 2-position caused the highest growth inhibition of Histoplasma yeast with MIC(50)s of 0.4 mu M. For these analogues, SIs of 92 to > 100 indicated generally low host toxicity. Substitution at the 3- and 4-position decreased antifungal activity. Similarities and differences were observed between Histoplasma and Cryptococcus SARs. For Cryptococcus, the naphth-1-ylmethyl substituent at the 5-position and smaller cyclopentylamide- or cyclohexylamide groups at the 2-position were important for activity. In contrast, slightly larger cyclohexylmethyl- and cyclohexylethyl substituents markedly decreased activity. (C) 2014 Elsevier Ltd. All rights reserved.
查看更多

同类化合物

伊莫拉明 (5aS,6R,9S,9aR)-5a,6,7,8,9,9a-六氢-6,11,11-三甲基-2-(2,3,4,5,6-五氟苯基)-6,9-甲基-4H-[1,2,4]三唑[3,4-c][1,4]苯并恶嗪四氟硼酸酯 (5-氨基-1,3,4-噻二唑-2-基)甲醇 齐墩果-2,12-二烯[2,3-d]异恶唑-28-酸 黄曲霉毒素H1 高效液相卡套柱 非昔硝唑 非布索坦杂质Z19 非布索坦杂质T 非布索坦杂质K 非布索坦杂质E 非布索坦杂质67 非布索坦杂质65 非布索坦杂质64 非布索坦杂质61 非布索坦代谢物67M-4 非布索坦代谢物67M-2 非布索坦代谢物 67M-1 非布索坦-D9 非布索坦 非唑拉明 雷西纳德杂质H 雷西纳德 阿西司特 阿莫奈韦 阿米苯唑 阿米特罗13C2,15N2 阿瑞匹坦杂质 阿格列扎 阿扎司特 阿尔吡登 阿塔鲁伦中间体 阿培利司N-1 阿哌沙班杂质26 阿哌沙班杂质15 阿可替尼 阿作莫兰 阿佐塞米 镁(2+)(Z)-4'-羟基-3'-甲氧基肉桂酸酯 锌1,2-二甲基咪唑二氯化物 铵2-(4-氯苯基)苯并恶唑-5-丙酸盐 铬酸钠[-氯-3-[(5-二氢-3-甲基-5-氧代-1-苯基-1H-吡唑-4-基)偶氮]-2-羟基苯磺酸基][4-[(3,5-二氯-2-羟基苯 铁(2+)乙二酸酯-3-甲氧基苯胺(1:1:2) 钠5-苯基-4,5-二氢吡唑-1-羧酸酯 钠3-[2-(2-壬基-4,5-二氢-1H-咪唑-1-基)乙氧基]丙酸酯 钠3-(2H-苯并三唑-2-基)-5-仲-丁基-4-羟基苯磺酸酯 钠(2R,4aR,6R,7R,7aS)-6-(2-溴-9-氧代-6-苯基-4,9-二氢-3H-咪唑并[1,2-a]嘌呤-3-基)-7-羟基四氢-4H-呋喃并[3,2-D][1,3,2]二氧杂环己膦烷e-2-硫醇2-氧化物 野麦枯 野燕枯 醋甲唑胺