摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

methyl 2,3-di-O-benzyl-4-deoxy-α-D-glucopyranoside | 108164-50-7

中文名称
——
中文别名
——
英文名称
methyl 2,3-di-O-benzyl-4-deoxy-α-D-glucopyranoside
英文别名
Methyl 2,3-di-O-benzyl-4-deoxy-α-D-xylo-hexopyranoside;[(2S,4S,5R,6S)-6-methoxy-4,5-bis(phenylmethoxy)oxan-2-yl]methanol
methyl 2,3-di-O-benzyl-4-deoxy-α-D-glucopyranoside化学式
CAS
108164-50-7
化学式
C21H26O5
mdl
——
分子量
358.434
InChiKey
BSDHVOKVBXWXMU-BURNTYAHSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    492.3±45.0 °C(predicted)
  • 密度:
    1.18±0.1 g/cm3(Temp: 20 °C; Press: 760 Torr)(predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    2.4
  • 重原子数:
    26
  • 可旋转键数:
    8
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.43
  • 拓扑面积:
    57.2
  • 氢给体数:
    1
  • 氢受体数:
    5

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    methyl 2,3-di-O-benzyl-4-deoxy-α-D-glucopyranoside 在 DMF 重铬酸吡啶草酰氯 作用下, 以 乙醚二氯甲烷N,N-二甲基甲酰胺 为溶剂, 反应 22.83h, 生成
    参考文献:
    名称:
    天然(+)-氨苄青霉素的全合成
    摘要:
    结构独特的抗真菌抗生素ambrutticin(1)首次在聚合合成中制备。其合成的策略涉及到的对映体纯片段的独立制备19,31和49。通过将糖基氟化物19与原位形成的乙烯基铝烷衍生物32偶联形成所需的C(7)C(8)β-C-糖苷键。C(13)C(14)反式双键的形成是通过砜片段49与醛中间体35的缩合完成的,从而形成了伞形蛋白的完整骨架骨架。皂化51,然后切割苄基保护基团得到天然ambrutticin。
    DOI:
    10.1016/s0040-4020(01)88025-x
  • 作为产物:
    描述:
    methyl 2,3-di-O-benzyl-6-O-acetyl-α-D-glucopyranoside 在 吡啶甲醇N-羟基丁二酰亚胺偶氮二异丁腈三正丁基氢锡sodium methylate 作用下, 以 甲苯 为溶剂, 反应 28.0h, 生成 methyl 2,3-di-O-benzyl-4-deoxy-α-D-glucopyranoside
    参考文献:
    名称:
    某些在位置C-4处脱氧的异麦芽寡糖的甲基α-糖苷的合成。
    摘要:
    通过缩合1,6-二-O-乙酰基-2,3-二-O-苄基-4-脱氧-甲基,合成在各种吡喃葡萄糖基单元的C-4位上脱氧的甲基α-异麦芽糖苷和甲基α-异麦芽三糖苷。 α,β-D-木吡咯烷酮e(7)或1,6-二-O-乙酰基-2,3,4-三-O-苄基-α,β-D-吡喃葡萄糖(10)[由银介导高氯酸盐和氯化锡(IV)]分别分别带有甲基α-D-吡喃葡萄糖苷,其4-脱氧类似物6或甲基4'-脱氧α-异麦芽糖苷(13)的适当保护的衍生物。
    DOI:
    10.1016/0008-6215(95)00280-4
点击查看最新优质反应信息

文献信息

  • Chemical mapping of the active site of the glucoamylase of<i>Aspergillus niger</i>
    作者:Raymond U. Lemieux、Ulrike Spohr、Mimi Bach、Dale R. Cameron、Monica M. Palcic、Torben P. Frandsen、Bjarne B. Stoffer、Birte Svensson
    DOI:10.1139/v96-036
    日期:1996.3.1

    A recently developed technique for the probing of the combining sites of lectins and antibodies, to establish the structure of the epitope that is involved in the binding of an oligosaccharide, is used to study the binding of methyl α-isomaltoside by the enzyme glucoamylase. The procedure involved the determination of the effects on the kinetics of hydrolysis of both monodeoxygenation and mono-O-methylation at each of the seven hydroxyl groups in order to gain an estimate of the differential changes in the free energies of activation, ΔΔG. As expected, from previous publications, both deoxygenation and O-methylation of OH-4 (reducing unit), OH-4′, or OH-6′ strongly hindered hydrolysis, whereas the kinetics were virtually unaffected by either the substitutions at OH-2 or structural changes at C-1. The substitutions at OH-3 caused increases of 2.1 and 1.9 kcal/mol in the ΔΔG. In contrast, whereas deoxygenation of either OH-2′ or OH-3′ caused much smaller (0.96 and 0.52 kcal/mol) increases in ΔΔG, the mono-O-methylations resulted in severe steric hindrance to the formation of the activated complex. The relatively weak effects of deoxygenation suggest that the hydroxyl groups are replaced by water molecules and thereby participate in the binding by contributing effective complementarity. Methyl α-isomaltoside was docked into the combining site of the X-ray crystal structure at 2.4 Å resolution of the complex with the inhibitor acarbose. A fit free of steric interactions with the protein was found that has the methyl α-glucopyranoside unit in the normal4C1conformation and the other glucose unit approaching a half-chair conformation with the interunit fragment defined by the torsion angles [Formula: see text] The model provides a network of hydrogen bonds that appears to well represent the activated complex formed by the glucoamylase with both maltose and isomaltose since the structures appear to provide a sound rationale for both the specificity and catalysis provided by the enzyme. Key words: monodeoxy and mono-O-methyl derivatives of methyl α-isomaltoside, enzyme binding domain, functioning of glucoamylase, differential changes in free energy of activation, characteristics of hydrogen bonding networks.

    最近开发的一种技术用于探测凝集素和抗体的结合位点,以建立与寡糖结合中涉及的表位的结构,用于研究酶葡萄糖酶对甲基α-异麦芽糖的结合。该过程涉及确定对水解动力学的影响,包括每个七个羟基的单去氧和单-O-甲基化,以获得活化自由能的差异变化ΔΔG的估计。如预期的那样,根据先前的发表,OH-4(还原单元)、OH-4'或OH-6'的脱氧和O-甲基化强烈阻碍了水解,而OH-2的置换或C-1的结构变化几乎不影响动力学。OH-3的置换导致ΔΔG增加了2.1和1.9 kcal/mol。相比之下,OH-2'或OH-3'的脱氧导致ΔΔG增加较小(0.96和0.52 kcal/mol),而单-O-甲基化导致了对激活复合物形成的严重位阻。脱氧的相对较弱影响表明,羟基被水分子取代,从而通过提供有效的互补性参与结合。甲基α-异麦芽糖被对接到X射线晶体结构的结合位点,分辨率为2.4 Å的复合物与抑制剂阿卡波糖。找到了与蛋白质无位阻相互作用的适合,其中甲基α-葡萄糖吡喃糖单元处于正常的4C1构象,另一个葡萄糖单元接近半椅构象,其间单元片段由扭转角度定义[Formula: see text]该模型提供了一个氢键网络,似乎很好地代表了由葡萄糖酶与麦芽糖和异麦芽糖形成的激活复合物,因为这些结构似乎为酶提供的特异性和催化提供了合理的基础。关键词:甲基α-异麦芽糖的单去氧和单-O-甲基衍生物,酶结合结构域,葡萄糖酶的功能,活化自由能的差异变化,氢键网络的特性。
  • Substrate Specificity of 2-Deoxy-<i>scyllo</i>-inosose Synthase, the Starter Enzyme for 2-Deoxystreptamine Biosynthesis, toward Deoxyglucose-6-phosphates and Proposed Mechanism
    作者:Noriaki IWASE、Fumitaka KUDO、Noriaki YAMAUCHI、Katsumi KAKINUMA
    DOI:10.1271/bbb.62.2396
    日期:1998.1
    A crucial enzyme in the biosynthesis of the 2-deoxystreptamine aglycon of clinically important aminocyclitol antibiotics is 2-deoxy-scyllo-inosose synthase (DOIS), which is responsible for the initial carbocycle formation of 2-deoxy-scyllo-inosose (1) from D-glucose-6-phosphate (G-6-P) (2). To get more insight into the mechanism and substrate specificity, deoxy-D-glucose-6-phosphates (deoxy-G-6-P)
    在临床上重要的氨基环糖醇类抗生素的2-脱氧链胺糖苷配子生物合成中的关键酶是2-脱氧鞘氨醇合酶(DOIS),该酶负责最初的碳环形成2-脱氧鞘氨醇(1)的过程。 D-葡萄糖-6-磷酸酯(G-6-P)(2)。为了更深入地了解机理和底物特异性,化学合成了脱氧-D-葡萄糖-6-磷酸酯(脱氧-G-6-P)并使其与DOIS反应。该酶似乎使用2-脱氧-G-6-P和3-脱氧-G-6-P作为底物,它们都被转化为相应的双脱氧-鞘脂肌糖产物,但是4-脱氧-G-6-P未能环化由DOIS。这些结果清楚地支持了所提出的反应机制,该机制涉及G-6-P底物在C-4处的初始氧化。
  • One-step stereospecific conversion of alcohols into dithiocarbamates: A smooth pathway for the introduction of a sulphur functionality
    作者:P. Rollin
    DOI:10.1016/s0040-4039(00)84938-2
    日期:1986.1
  • Stereocontrolled Photocyclization of 1,2-Diketones: Application of a 1,3-Acetyl Group Transfer Methodology to Carbohydrates
    作者:Antonio J. Herrera、María Rondón、Ernesto Suárez
    DOI:10.1021/jo702663w
    日期:2008.5.1
    Photolysis of 1-glycosyl-2,3-butanodione derivatives using visible light is a mild and selective procedure for the synthesis of chiral 1-hydroxy-1-methyl-5-oxaspiro[3.5]nonan-2-one carbohydrate derivatives. The results strongly suggest that stereocontrol of the cyclization is dependent on conformational and stereoelectronic factors. Further oxidative opening, of the 1-hydroxy-1-methyl-2-cyclobutanone moiety affords new C-ketoside derivatives either in C- and O-glycoside series. This tandem two-step process could be considered to be a stereocontrolled 1,3-transference of an acetyl group, and it can be applied either to pyranose and furanose models.
  • D-glycopyranosyl phenylsulfones: Acylation of their lithiated anions and reductive desulfonylation of the resulting acylated sulfones. A synthesis of α-D-C-glycosides
    作者:Jean-Marie Beau、Pierre Sinaÿ
    DOI:10.1016/s0040-4039(00)95050-0
    日期:1985.1
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐