Direct synthesis of dialkylarylvinylsilane derivatives: metathesis of dialkylaryl-iso-propenylsilane and its application to tetracyclic silacycle dye synthesis
The metathesis of dialkylarylvinylsilane, which has not been accomplished to date, is achieved using dialkylaryl-iso-propenylsilane as a substrate. In addition, we discovered that the reason why the metathesis of a ruthenium carbene complex and dialkylarylvinylsilane is difficult is the formation of a carbide complex.
A catalytic defluorinative hydroarylation of alkenes with polyfluoroarenes in the presence of dppbz‐ligated Cu catalyst and silanes was developed. This method provides a straightforward and alternative avenue to synthetic important polyfluorinated arenes with readily available and bench‐stable alkenes as latent nucleophiles, and therefore avoids conventional reliance on stoichiometric quantities of
A strategically novel protocol for ring-opening functionalization of aryl gem-difluorocyclopropanes (F2CPs), which allows an expedient construction of CF3-containing architectures via visible-light-promoted F-nucleophilic attack manifold, was disclosed. Single electron oxidation of F2CPs was ascribed as the critical step for the success of this transformation by prompting F-nucleophilic attack, as
HFIP Solvent Enables Alcohols To Act as Alkylating Agents in Stereoselective Heterocyclization
作者:Yuxiang Zhu、Ignacio Colomer、Amber L. Thompson、Timothy J. Donohoe
DOI:10.1021/jacs.9b02198
日期:2019.4.24
method for the stereoselective synthesis of highly functionalized oxygen heterocycles using allyl or benzyl alcohols as alkylating agents is presented. The process is efficient and atom economic, generating water as the only stoichiometric byproduct. Substoichiometric amounts of Ti(OiPr)4 in HFIP solvent are key to this reactivity, and the method tolerates a broad substitution pattern on both the alcohol
decomposition during the epoxidation. From the mechanistic studies, the semipinacol rearrangement of the epoxide could precede the ionization at the bisbenzylic position, yielding the aldehyde intermediate. The ensuing dehydrative aromatization led to the formation of 9-anthraldehyde. Conversely, nucleophilic addition to the aldehyde and dehydrative aromatization with concomitant loss of formic acid