Design, synthesis and biological evaluation of novel pyrazoline-containing derivatives as potential tubulin assembling inhibitors
摘要:
A series of novel pyrazoline-containing derivatives (15-47) has been designed, synthesized and evaluated for their biological activities. Among them, compound 18 displayed the most potent antiproliferative activity against A549, MCF-7 and HepG-2 cells line (IC50 = 0.07 mu M, 0.05 mu M, 0.03 mu M, respectively) and the tubulin polymerization inhibitory activity (IC50 = 1.88 mu M), being comparable to CA-4. Furthermore, we also tested that compound 18 was a potent inducer of apoptosis in HepG-2 cells and it had cellular effects typical for microtubule interacting agents, causing accumulation of cells in the G2/M phase of the cell cycle. These studies, along with molecular docking, provided a new molecular scaffold for the further development of antitumor agents that target tubulin. (C) 2015 Elsevier Masson SAS. All rights reserved.
simple substrates. However, they usually involve the employment of organic halides and suffer from toxic or environmental issues. We report an efficient and environmentally benign methodology—aerobic oxidative cross-coupling of primary and secondary alcohols—to directly produce α,β-unsaturated ketones that are key intermediates for synthesis of agrochemical, pharmaceutical, and other fine chemicals. A noble-metal-free
C–C键形成反应在化学中对于从容易获得的简单底物构建复杂大分子非常重要。但是,它们通常涉及有机卤化物的使用,并且具有毒性或环境问题。我们报告了一种有效且对环境无害的方法-伯醇和仲醇的好氧氧化交叉偶联-直接生产α,β-不饱和酮,这是合成农业化学,制药和其他精细化学品的关键中间体。一种无贵金属的Co–N–C催化剂,是由钴-菲咯啉配合物在中孔碳载体上热解衍生而来的,可用于目标反应,并具有很高的催化活性(转换频率为3.8 s –1基于Co的单原子,超过了文献中的技术水平),良好的可回收性以及对各种基材的广泛适用性(28个示例)。有人建议在Co–N–C催化剂中的活性位是在石墨薄片内与N键合的Co单原子。
A Novel Series of 3,4-Disubstituted Dihydropyrazoles: Synthesis and Evaluation for MAO Enzyme Inhibition
In this study, the authors have designed and synthesized a novelseries of 3-acyl-4-aryl-4,5-dihydropyrazoles, with the aim to obtain new potential scaffolds for the inhibition of both isoforms of monoamine oxidase (MAO) enzyme. The synthetic pathway to these compounds includes as a key step the 1,3-dipolar cycloaddition reaction of diazomethane with a chalcone. All the compounds were fully characterized
Cyclooxygenase-2 (COX-2) as a rate-limiting metabolism enzyme of arachidonic acid has been found to be implicated in tumor occurrence, angiogenesis, metastasis as well as apoptosis inhibition, regarded as an attractive therapeutic target for cancer therapy. In our research, a series of dihydropyrazole derivatives containing benzo oxygen heterocycle and sulfonamide moieties were designed as highly potent
4,5-Dihydropyrazole derivatives containing oxygen-bearing heterocycles as potential telomerase inhibitors with anticancer activity
作者:Yin Luo、Yang Zhou、Jie Fu、Hai-Liang Zhu
DOI:10.1039/c4ra02200a
日期:——
Telomere and telomerase were closely related to the occurrence and development of some cancers. After the key active site of telomerase was identified, to enhance the ability of dihydropyrazole derivatives to inhibit telomerase, we designed a series of novel 4,5-dihydropyrazole derivatives containing heterocyclic oxygen moiety based on previous studies. The telomerase inhibition assay showed that compound 10a displayed the most potent inhibitory activity with an IC50 value of 0.6 μM for telomerase. The antiproliferative assay showed that 10a exhibited high activity against human gastric cancer cell SGC-7901 with an IC50 value of 10.95 ± 0.60 μM. Flow cytometric analysis and western blot results showed that 10a induced both apoptosis and autophagy. A docking simulation showed that 10a could bind well to the active site of telomerase and act as a telomerase inhibitor. The 3D-QSAR model was also built to provide a more pharmacological understanding that could be used to design new agents with more potent telomerase inhibitory activity.
isolate as well. In silico analysis of ADMET properties showed that the evaluated chalcones displayed satisfactory pharmacokinetic parameters. In conclusion, the obtained data demonstrate that at least two of the studied chalcones, compounds 4 and 5, are promising antimycobacterial and anti-inflammatory agents, especially focusing on an anti-tuberculosis dual treatment approach.